
microsoft
fortran-80
docu mentation

microsoft
fortran-80
documentation

Microsoft FORTRAN-BO and associated software are accompanied by the following
documents:

1. FORTRAN-80 REFERENCE MANUAL
provides an extensive description of FORTRAN-BO's statements, functions and syntax.

2 FORTRAN-80 USER'S MANUAL
describes the FORTRAN-80 compiler commands and error messages.

3. MICROSOFT UTILITY SOFTWARE MANUAL
describes the use of the MACRO-80 Assembler, LlNK-80 Linking Loader, and LlB-80 Library
Manager with the FORTRAN-80 compiler.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is
furnished under a license agreement or non-disclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

(C) Microsoft, 1979

To report software bugs or errors in the documentation, please complete and return the
Problem Report at the back of this manual.

CP 1M is a registered trade mark of Digital Research

MICROSOFT
FORTRAN-BO'

THE MOST COMPLETE
IMPLEMENTATION OFTHE

FORTRAN LANGUAGE
FOR 8080 AND Z80

MICROPROCESSORS.

1IIICROlon

FORTRAN-SO
Microsoft FORTRAN-aO brings the most popular

science and engineering programming language to
aoao/zao microcomputers. FORTRAN-SO is comparable to
FORTRAN compilers on large mainframes and mini
computers. The FORTRAN-SO package includes full ANSI
Standard FORTRAN X3.9-1966 except the COMPLEX
data type.

FORTRAN-80 ENHANCES THE 1966
ANSI STANDARD IN SEVERAL
WAYS:
• Single byte LOGICAL variables which can be used as
integer quantities in the range + 127 to -127.

• DO loops which use LOGICAL variables for tighter, faster
execution of small loops.

• Mixed mode arithmetic expressions.

• Hexadecimal constants.

• Hollerith (character) literals accepted.

• Logical operations on integer data .. AND., .OR.,
· NOT., . XOR. can be used for a-bit, 16-bit, or 32-bit Boolean
operations.

• READIWRITE End of File or Error Condition transfer.
END=nand ERR=n (where n is the statement number) can
be included in READ or WRITE statements to transfer control
to the statement specified by n when an error or file end is
detected.

• ENCODE/DECODE for FORMAT operations to memory.

• IMPLICIT statement for redefining default variable types by
specifying a type and a range of initial letters.

• INCLUDE statement for including commonly used
subroutines, code, or declarations from another file.

• INTEGER*4 variables and constants using 32 bits in the
range of +2,147,483,647 to -2,147,483,648.

• Support for CP/M version 2.x providing access to a
maximum of 65,536 records in a file as large as a megabytes.

FORTRAN-80 COMPILER
FORTRAN-80 compiles several hundred statements per

minute in a single pass. It requires no more than 27K bytes of
memory to compile most programs. Additional memory,
when available, is used for symbol table storage and optimiza
tions. Compiled programs are relocatable modules that are
linked and loaded at runtime.

The FORTRAN-SO compiler optimizes the generated object
code as follows:

Common Subexpressjon Elimination.
Common subexpressions are evaJuated once; the value is
automatically substituted in subsequent occurrences of the
subexpression.

Peephole Optimization.
In special cases, small sections of code can be replaced by
more compact code. Example: 1=1+1 uses an INX H
instruction instead of a DAD.

Constant Folding.
Integer constant expressions are evaluated at compile
time.

Branch Optlmlxatlons.
The number of conditional jumps in arithmetic and logical
IFs is minimized.

The compiler also provides diagnostic output. Descriptive
error messages include the preceding twenty characters. At
program's end, the compiler generates an error summary. A
fully symbolic listing of the generated machine language is
also produced. This is supplemented by tables of addresses
assigned to labels, variables and constants.

SUBROUTINE LIBRARY
FORTRAN-SO supplies an extensive library of efficient

subroutines. Only the necessary subroutines are loaded at
runtime. The LIB-SO standard library includes:

ABS DATAN DSIN MAXl
AINT DATAN2 DSQRT MIND
AlOG DBlE EXP MINl
AlOG10 DCOS FIX MOD
AMAXO DEXP FLOAT OUT
AMAX1· DIM lABS PEEK
AMINO DlOG 101M POKE
AMIN1 DlOG10 JOINT SIGN
AMOD DMAXl INP SIN
ATAN DMINl INT SNGl
ATAN2 DMOD ISIGN SQRT
COS DSIGN MAXO TANH
DABS

The library also contains efficient routines for l6-bit and 32-bit
integer arithmetic and 32-bit and 64-bit floating point
arithmetic.

ASSEMBLER AND LINKER
The FORTRAN-SO package includes the MACRO-SO

relocating macro assembler and LINK-SO relocating linking
loader.

MACRO-SO relocating assembler resides in approximately
19K. It includes a complete Intel-standard macro facility with
IRP, IRPC, REPEAT, local variables and EXITM. MACRO-SO
also provides a full set of conditional pseudo-operations,
conditional listing control, comment blocks, octal or hex
listings and a variable input radix. The assembler accepts
both Intel S080 and Zilog Z80 mnemonics.

LINK-SO relocating load~r resolves external references
between object modules. LINK-SO performs library searches
for system subroutines. It also generates a memory load map
displaying the locations of the main program, subroutines and
COMMON areas. LINK-SO requires approximately 10K bytes
of memory.

CUSTOM I/O DRIVERS
Users may write non-standard 1/0 drivers for each logical

Unit Number, so interfacing non-standard devices to
FORTRAN programs is straightforward.

THE FORTRAN-80 SYSTEM
Versions of FORTRAN-SO are available for various

operating systems including Digital Research CP/M~,
Tektronix TEKDOS, InteFM ISIS II, Radio Shack TRSDOSTM
Modell and Model II, GenRad RDOS and many others.
Microsoft welcomes the opportunity to adapt FORTRAN-SO
to OEM systems.

Updates to FORTRAN-SO are announced periodically and
are available for a minimal charge.

FORTRAN-SO system (including documentation): $500.00

FORTRAN-SO documentation only: $ 20.00

OEM and dealer agreements are available upon request.

C P 1M is a registered trademark of Digital Research
Intel is a trademark of the Intel Corporation
TRSDOS is a trademark of Radio Shack

MIIIICI SOFT
10800 NE Eighth, Suite 819
Bellevue, WA 98004
206-455-8080 Telex 328945

VECTOR Microsoft
Research Park
B3030 Leuven
Belgium
016-20-24-96 Telex 26202 VECTOR

ASCII Microsoft
102Plasada
3-16-14 Minami Aoyama
Minato-ku
Tokyo 107, Japan
03-403-2120 Telex 2426875 ASCII J

Microsoft FORTRAN-80, Release 3.4 November, 1980

Addendum to: FORTRAN-80 Reference Manual

Random Number Generator

A new function, RAN, has been added to the FORTRAN
library routines listed in Table 9-2. RAN is a
random number generator that is compatible with
Microsoft~s BASIC Compiler and BASIC-80
Interpreter. The random number generated is a REAL
decimal number between a and 1.

The random number generator is called
statement of the following form:

<variable> = RAN(x)

by a

If x < 0, the first value of a new sequence of
random numbers is returned.

If X = 0, the last random number generated is
returned again.

If x > 0, the next random number in the sequence is
generated.

Microsoft FORTRAN-80, Release 3.4 December, 1980

ADDENDUM TO: FORTRAN-80 Reference Manual
INTEGER*4 Variables

There are the following restrictions on the use of the new
INTEGER*4 extended integer data type:

1. INTEGER*4 variables cannot be used as Logical unit
Numbers in READ or WRITE statements.

2. INTEGER*4 variables cannot be used
indices.

as array

3. INTEGER*4 variables cannot be used as indices in
implied DO loops.

4. INTEGER*4 variables cannot be used in computed or
assigned GOTO statements.

fortran-80
user's
manual

fortran-80
user's
manual

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is
furnished under a license agreement or non-disclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

(C) Microsoft, 1979

CP 1M is a registered trade mark of Digital Research

8202-342-02

Microsoft FORTRAN-SO, Release 3.43

Addendum to: FORTRAN-SO User's Manual
(for CP/M Operating Systems)

Add to Section 1.2, Command Format

July, 19S1

The FORTRAN-SO Compiler now accepts lower case filenames and
device codes at the asterik prompt level.

Add to Section 2.2, FORTRAN Runtime Error Messages

The fatal run-time error **FN** has been removed. This
error occured when the program attempted to read a
non-existant file. The new DSKDRV.MAC now allows the
programmer to use the "ERR=" switch in the READ statement to
trap this error. If the "ERR=" switch is not used in the
READ statement, and a read is attempted on a non existent
file, a fatal error, **10**, will occur.

Microsoft FORTRAN-80 Version 3.4 January 1981

ADDENDUM TO: Microsoft FORTRAN-80 User's Manual
Section 4
TEKDOS Release 3.1

If you are using TEKDOS version 3.1 and wish to have line
feeds inserted in compiler print listings that are sent
directly to the printer, make the following patch in the
FORTRAN version 3.4 compiler:

Using the TEKDOS DEBUG program, insert 00 hex (NOP)
in locations 2A95 hex, 2A96 hex, and 2A97 hex.

This patch will enable users of printers without an
auto-linefeed function to print compiled listings properly.

Microsoft
FORTRAN-SO User's Manual

CONTENTS

SECTION 1 Compiling FORTRAN Programs

SECTION

SECTION

SECTION

1.1
1.2
1.2.1
1.2.2
1.3
1.4

Running the FORTRAN-SO Compiler
Command Format

Devices
FORTRAN-80 Compilation Switches

Programs in ROM
Sample Compilation

2 Error Messages

2.1 FORTRAN Compiler Error Messages
2.2 FORTRAN Runtime Error Messages

3 FORTRAN-SO Disk Files

3.1 Default Disk Filenames
3.2 CALL 'OPEN
3.3 Record Length

4 FORTRAN-SO with TEKDOS

4.1 Command Format
4.2 Disk I/O and LUN Assignments

1

1
1
2
3
5
6

S

8
10

12

12
12
13

14

14
14

FORTRAN-SO User's Manual Page 1

SECTION 1

Compiling FORTRAN Programs

1.1 Running the FORTRAN-SO Compiler

The command to run FORTRAN-SO is

FSO

FORTRAN-SO returns the prompt n*" indicating it is
ready to accept commands.

NOTE

If you are
system, see
formats.

using the TEKDOS operating
Section 4 for proper command

1.2 Command Format

A command to FORTRAN-SO consists of a string of
filenames with optional switches. All filenames
should follow the operating system's conventions
for filenames and extensions. The default
extensions supplied by Microsoft software are as
follows:

File

FORTRAN source file
COBOL source
MACRO-SO source file
Relocatable object file
Listing file
Absolute file

FOR
COB
MAC
REL
PRN
COM

ISIS-II

FOR
COB
MAC
REL
LST

A command to FORTRAN-SO conveys the name of the
source file to be compiled, the names of the
file(s) to be created, and which options are
desired. The format of an FORTRAN-SO command is:

objfile,lstfile=source file

Only the equal ~ign and the source file field are
required to create a relocatable object file with
the default (source) filename and the default
extension REL.

Otherwise, an object file is created only if the

FORTRAN-BO User's Manual Page 2

objfile field is filled, and a listing file is
created only if the lstfile field is filled.

To compile the source file without producing an
object file or listing file, place only a comma to
the left of the equal sign. This is a handy
procedure that lets you check for syntax errors
before compiling to an object file.

Examples:

*=TEST Compile the program TEST. FOR
and place the object file
in TEST.REL

*TESTOBJ=TEST.FOR Compile the program TEST. FOR
and place the object file

*TEST,TEST=TEST

*,=TEST.FOR

in TESTOBJ.REL

Compile TEST. FOR, placing the
object file in TEST.REL and
the listing file in TEST.PRN.
(With ISIS-II, the listing file
is TEST. LST.)

Compile TEST. FOR without creating
an object or listing file. Useful
for error check.

1.2.1 Devices

Device

Any field in the FORTRAN-BO command string can also
specify a device name. The default device name
with the CP/M operating system is the currently
logged disk. The default device name with the
ISIS-II operating system is disk drive O. The
command format is:

dev:objfile,dev:lstfile=dev:source file

The device names are as follows:

ISIS-II

Disk drives
Line printer
Console

A:, B:, C:, ...
LST:
TTY:

:FO:, :Fl:, :F2:, ••.
LST:
TTY:

High speed reader HSR

FORTRAN-80 User's Manual Page 3

Examples:

*,TTY:=TEST Compile the source file TEST. FOR
and list the program on the
console. No object code is
generated. Useful for error check.

*SMALL,TTY:=B:TEST Compile TEST. FOR (found
on disk drive B), place

1.2.2

the object file in SMALL.REL,
and list the program on the console.

FORTRAN-80 Compilation Switches

A switch is a letter that is appended to the
command string, .preceded by a slash. It specifies
an optional task to be performed during
compilation. More than one switch can be used, but
each must be preceded by a slash. (With the TEKDOS
operating system, switches are preceded by commas
or spaces. See Section 4.)
All switches are optional.

The available switches are:

Switch

o

H

N

R

L

P

Action

Print all listing addresses, etc.
in octal.

Print all listing addresses, etc.
in hexadecimal. (Default)

Do not list generated code.

Force generation of an object file.

Force generation of a listing file.

Each IP allocates an extra 100
bytes of stack space for use during
compilation. Use IP if stack
overflow errors occur during
compilation. Otherwise not needed.

FORTRAN-80 User's Manual Page 4

M Specifies to the compiler that the

Examples:

generated code should be in a
which can be loaded into
When a /M is specif1ed,
generated code will differ
normal in the following ways:

form
ROMs.

the
from

1. FORMATs will be placed in the
program area, with a "JMP" around
them.
2. Parameter blocks (for
subprogram calls with more than 3
parameters) will be initialized at
runtime, rather than being
initialized by the loader.

*,TTY:=MYPROG/N Compile file MYPROG.FOR and list
program on terminal but without
generated code.

*=TEST/L

*=BIGGONE/P/P

Compile TEST. FOR to create
object file TEST.REL and
listing file TEST.PRN. (With
ISIS-II, the listing file
is TEST.LST.)

Compile file BIGGONE.FOR
and produce object file
BIGGONE.REL. Compiler is
allocated 200 extra bytes
of stack space.

FORTRAN-80 User's Manual

1.3 Programs in ROM

If a FORTRAN program is intended
programmer should be aware of
ramifications:

Page 5

for ROM, the
the following

1. DATA statements should not be used to
initialize RAM. Such initialization is done by
the loader, and will therefore not be present
at execution. Variables and arrays may be
initialized during execution via assignment
statements, or by READing into them.

2. FORMATs should not be
execution.

read into during

3. If the standard library I/O routines are used,
DISK files should not be OPENed on any LUNs
other than 6, 7, 8, 9, 10. If other LUNs are
needed for Disk I/O, $LUNTB should be
recompiled with the appropriate addresses
pointing to the Disk driver routine.

A library routine, $INIT, sets the stack pointer at
the top of available memory (as indicated by the
operating system) before execution begins.

The calling convention is:

LXI B,<return address>
JMP $INIT

If the generated code is intended for some other
machine, this routine should probably be rewritten.
The source of the standard initialize routine is
provided on the disk as "INIT.MAC". Only the
portion of this routine which sets up the stack
pointer should ever be modified by the user. The
FORTRAN library already contains the standard
initialize routine.

FORTRAN-SO User's Manual

1.4 Sample Compilation

A>FSO

*EXAMPL,TTY:=EXAMPL

FORTRAN-SO Ver. 3.3 Copyright 1979 (C)
00100 PROGRAM EXAMPLE
00200 INTEGER X
00300 I = 2**S + 2**9 + 2**10
00400 DO 1 J=1,5
***** DODO' LXI H,0700
***** 0003' SHLD I
00500 C CIRCULAR SHIFT I LEFT 3
00600 CALL CSL3(I,X)
***** 0006' LXI H,OOOI
***** 0009' SHLD J
00700 WRITE(3,10) I,X
***** OOOC' LXI D,X
***** OOOF' LXI H,I
***** 0012' CALL CSL3
***** 0015' LXI D,10L
***** 001S' LXI H, [03
***** 001B' CALL $W2
OOSOO 1 I=X
***** 001E' LXI B,X
***** 0021' LXI D,I
***** 0024' LXI H, [01
***** 0027' MVI A,03
***** 0029' CALL $IO
***** 002C' CALL $ND
00900 10 FORMAT (2 115)
***** 002F' LHLD X
***** 0032' SHLD I
***** 0035' LHLD J
***** 003S' INX H
***** 0039' MVI A,05
***** 003B' SUB L
***** 003C' MVI A,OO
***** 003E' SBB H
***** 003F' JP 0009'
01000 END
***** 0042' CALL $EX
***** 0045' 0100
***** 0047' 0300

Program Unit Length=0049 (73) Bytes
Data Area Length=OOOD (13) Bytes

Subroutines Referenced:

$IO
$ND

CSL3
$EX

Page 6

By Microsoft - Bytes: 4524

BITS -- RESULT IN X

00]

00]

$W2

FORTRAN-SO User's Manual

Variables:

x

LABELS:

lL

*AC
A>

0001"

002F'

Page 7

I 0003"

10L 0007"

See Section 2.9 of the Microsoft Utility Software Manual for
a listing of the MACRO-SO subroutine CSL3.

J O~~S''

FORTRAN-80 User's Manual Page 8

SECTION 2

Error Messages

2.1 FORTRAN Compiler Error Messages

The FORTRAN-80 Compiler detects two kinds of
errors: Warnings and Fatal Errors. When a Warning
is issued, compilation continues with the next item
on the source line. When a Fatal Error is found,
the compiler ignores the rest of the logical line,
including any continuation lines. Warning messages
are preceded by percent signs (%), and Fatal Errors
by question marks (?). The editor line number, if
any, or the physical line number is printed next.
It is followed by the error code or error message
and the last 20 characters scanned at the time the
error was detected.

Example:

?Line 25: Mismatched Parentheses: I=(I+J»
%Line 16: Missing Integer Variable: I(2*2,

When either type of error occurs, the program
should be changed so that it compiles without
errors. No guarantee is made that a program that
compiles with errors will execute sensibly.

Fatal Errors:

Error
Number

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

Message

Illegal Statement Number
Statement Unrecognizable or Misspelled
Illegal Statement Completion
Illegal DO N~sting
Illegal Data Constant
Missing Name
Illegal Procedure Name
Invalid DATA Constant or Repeat Factor
Incorrect Number of DATA Constants
Incorrect Integer Constant
Invalid Statement Number
Not a Variable Name
Illegal Logical Form Operator
Data Pool Overflow
Literal String Too Large
Invalid Data List Element in I/O
Unbalanced DO Nest
Identifier Too Long
Illegal Operator
Mismatched Parenthesis

FORTRAN-80 User's Manual

120 Consecutive Operators
121 Improper Subscript Syntax
122 Illegal Integer Quantity
123 Illegal Hollerith Construction
124 Backwards DO reference
125 Illegal Statement Function Name
126 Illegal Character for Syntax
127 Statement Out of Sequence
128 Missing Integer Quantity
129 Invalid Logical Operator
130 Illegal Item Following INTEGER or

REAL or LOGICAL
131 Premature End Of File on Input Device
132 Illegal Mixed Mode Operation
133 Function Call with No Parameters
134 Stack Overflow
135 Illegal Statement Following Logical IF
136 Wrong Number of Subscripts
137 File Not Found

Warnings:

o Duplicate Statement Label
1 Illegal DO Termination
2 Block Name = Procedure Name
3 Array Name Misuse
4 COMMON Name Usage
5 Wrong Number of Subscripts

Page 9

6 Array Multiply EQUIVALENCEd within a Group
7 Multiple EQUIVALENCE of COMMON
8 COMMON Base Lowered
9 Non-COMMON Variable in BLOCK DATA
10 Empty List for Unformatted WRITE
11 Non-Integer Expression
12 Operand Mode Not Compatible with Operator
13 Mixing of Operand Modes Not Allowed
14 Missing Integer Variable
15 Missing Statement Number on FORMAT
16 Zero Repeat Factor
17 Zero Format Value
18 Format Nest Too Deep
19 Statement Number Not FORMAT Associated
20 Invalid Statement Number Usage
21 No Path to this Statement
22 Missing Do Termination
23 Code Output in BLOCK DATA
24 Undefined Labels Have Occurred
25 RETURN in a Main Program
26 STATUS Error on READ
27 Invalid Operand Usage
28 Function with no Parameter
29 Hex Constant Overflow
30 Division by Zero
32 Array Name Expected
33 Illegal Argument to ENCODE/DECODE

FORTRAN-SO User's Manual

2.2 FORTRAN Runtime Error Messages·

Code Meaning

Warning Errors:

IB Input Buffer Limit Exceeded
TL Too Many Left Parentheses in FORMAT
OB Output Buffer Limit Exceeded
DE Decimal Exponent Overflow

(Number in input stream had
an exponent larg~r than 99)

IS Integer Size Too Large
BE Binary Exponent Overflow
IN Input Record Too Long
OV Arithmetic Overflow
CN Conversion Overflow

on REAL to INTEGER Conversion
SN Argument to SIN Too Large
A2 Both Arguments of ATAN2 are 0
IO Illegal I/O Operation
BI Buffer Size Exceeded During Binary I/O
RC Negative Repeat Count in FORMAT
FW FORMAT Field Width is Too Small

Fatal Errors:

ID Illegal FORMAT Descriptor
FO FORMAT Field Width is Zero
MP Missing Period in FORMAT

Page 10

IR Real Number written to INTEGER Format Field
IT I/O Transmission Error
ML Missing Left Parenthesis in FORMAT
DZ Division by Zero, REAL or INTEGER
LG Illegal Argument to LOG Function

(Negative or Zero)
S QIllegal Atgument to SQRT Function (Negative)
DT Data Type Does Not Agree With FORMAT

Specification
EF EOF Encountered on READ

Runtime errors are surrounded by asterisks as
follows:

FW at address XXXX**

The location of the error is disclosed also. Fatal
errors cause execution to cease (control is
returned to the operating system). Execution
continues after a warning error. However, after 20
warnings, execution ceases.

FORTRAN-SO User's Manual Page 11

NOTE

It is possible, in rare cases, to get a
FORTRAN-SO internal error, as designated by
the error code "??". This indicates an
internal malfunction of the runtime. If
you get the "??" error code, contact
Microsoft and report the conditions under
which the message appeared.

FORTRAN-80 User's Manual

SECTION 3

FORTRAN-80 Disk Files

NOTE

If you are using the TEKDOS
operating system, see Section
4.2, Disk I/O and LUN
Assignments.

3.1 Default Disk Filenames

Page 12

A disk file (random or sequential) that is OPENed
by a READ or WRITE statement has a default name
that depends upon the LUN and the operating system.
For CP/M and ISIS-II, the default filenames are:

FORT06.DAT, FORT07.DAT, •.. , FORTIO.DAT

(For the default filenames used with TEKDOS, see
Section 4.)

In each case, the LUN is incorporated into the
default file name.

3.2 CALL OPEN

Instead of using READ or WRITE, a disk file may be
OPENed using the OPEN subroutine (see the
FORTRAN-80 Reference Manual, Section 8.3.2). The
format of an OPEN call under CP/M is:

CALL OPEN (LUN, Filename, Drive)

where:

LUN = a Logical Unit Number to be associated with
the file (must be an Integer constant or Integer
variable with a value between I and 10).

Filename = an ASCII name which the operating system
will associate with the file. The Filename should
be a Hollerith or Literal constant, or a variable
or array name, where the variable or array contains
the ASCII name. The Filename should be
blank-filled to exactly eleven characters.

Drive = the number of the disk drive on which the
file exists or will exists (must be an Integer
constant or Integer variable within the range

FORTRAN-80 User's Manual Page 13

allowed by the operating system). If the Drive
specified is 0, the currently selected drive is
assume~; 1 is drive A, 2 is drive B, etc.

The form of an OPEN call under ISIS-II is:

CALL OPEN (LUN, Filename)

where:

LUN = a Logical Unit Number to be associated with
the file (must be an Integer constant or Integer
variable with a value between 1 and 10).

Filename = an ASCII name which the operating system
will associate with the file. The Filename should
be a Hollerith or Literal constant, or a variable
or array name where the variable or array contains
the ASCII name. The Filename should be in the form
normally required by ISIS-II, i.e., a device name
surrounded by colons, followed by a name of up to 6
characters, a period, an extension of up to 3
characters, and a space (or other non-alphanumeric
character). The Filename must be terminated £y a
non-alphanumeric character.

The following are examples of valid OPEN calls
under ISIS-II:

CALL OPEN (6, ':Fl:FOO.DAT I)

CALL OPEN (1, ' :F5 :TESTFF. TMP ,)

CALL OPEN (4, ':F3:A.B ')

3.3 Record Length

The record length of any file accessed randomly
under CP/M or ISIS-II is assumed to be 128 bytes (1
sector). Therefore, it is recommended that any
file you wish to read randomly be created via
FORTRAN (or Microsoft BASIC) random access
statements. Random access files created this way
(using either binary or formatted WRITE statements)
always have l28-byte records. If the WRITE
statement does not transfer enough data to fill the
record to 128 bytes, then the end of the record is
filled with zeros (NULL characters) .

FORTRAN-BO User's Manual Page 14

SECTION 4

FORTRAN-BO with TEKDOS

4.1 Command Format

The' command format for FORTRAN-BO differs slightly
under the TEKDOS operating system.

The FORTRAN-BO compiler accepts command lines only.
A prompt is not displayed and interactive commands
are not accepted. Commands have the same format as
TEKDOS assembler commands; i.e., three filename or
device name parameters plus optional switches.

FBO [objfile] [lstfile] sourcefile [swl] [sw2 ..•]

The object and listing file parameters are
optional. These files will not be created if the
parameters are omitted, however any error messages
will still be displayed on the console. The
available switches are as described in the Section
1 of this manual, except that the switches are
delimited by commas or spaces instead of slashes.

4.2 Disk I/O and LUN Assignments

(See FORTRAN-BO Reference Manual, Section B.3.)

FORTRAN-BO under TEKDOS does not support random
access disk files. Only sequential files are
supported.

Logical units 1-4 are assigned to the console and
may be used for either input or output.

Logical units 5-10 go through DSKDRV. They default
to sequential disk files with the names

FOR05DAT, ..• FORIODAT.

These units may be re-assigned to any filename or
device using an OPEN call. The form of an OPEN
call is:

CALL OPEN(LUN, filename)

is a logical unit number (Integer
or constant between 5 and 10), and

is a Hollerith or Literal constant or
containing the ASCII filename and/or

The filename cannot have more than 11

where LUN
variable
filename
variable
device.

FORTRAN-aD User's Manual Page 15

characters, and it must be terminated by a blank or
null character.

Examples:

CALL OPEN(8,'TSTFIL/l ')

opens TSTFIL on drive 1 and associates it
with LUNa.

CALL OPEN (5, 'REMO ')

opens LUN5 for device REMO.

fortran-80
reference
manual

fortran-80
reference
manual

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is
furnished under a license agreement or non-disclosure agreement. The software may be
used or copied only in accoroance with the terms of t~e agreement.

(C) Microsoft, 1979

CP 1M is a registered trade mark of Digital Research

8201-342-03

SECTION 1

SECTION 2

MICROSOFT FORTRAN-SO
Reference Manual

Contents

Introduction

Fortran Program Form

2.1 FORTRAN Character Set
2.1.1 Letters ••.•••••
2.1.2 Digits ••••••
2.1.3 Alphanumerics •..
2.1.4 Special Characters
2.2 FORTRAN Line Format
2.3 Statements ••.•
2.4 INCLUDE Statement

7

8

• • • . 8
• • • 8
• •• 8
• •• 8

9
• •• 9

• 12
• 13

SECTION 3 Data Representation/Storage Format • . 14

3.1 Data Names and Types .••.
3.1.1 Names •••
3 • 1 • 2 Type s
3.2 Constants • • •• • ••
3.3 Variables •••••••

· 14
. • • • 14

· • • 14
• 15

· 19
3.4 Arrays and Array Elements ••• • 20

•. 21 3.5 Subscripts. • •••
3.6 Data Storage Allocation · 22

SECTION 4 FORTRAN Expressions . . • 25

4.1 Arithmetic Expressions. • 25
4.2 Expression Evaluation .•..••.• 26
4.3 Logical Expressions ••••.••.• 27
4.3.1 Relational Expressions •.••••. 28
4.3.2 Logical Operators . •• • •.• 29
4.4 Hollerith, Literal, and Hexadecimal

Constants in Expression • . . • • . . 31

SECTION 5 Replacement Statements . • . . • . . • 32

SECTION 6 Specification Statements 34

6.1 Specification Statements . . . 34
6.2 Array Declarators . . • • 34
6.3 Type Statements . • •• . 35
6.4 EXTERNAL Statements ...•.. 37
6.5 DIMENSION Statements 37

6.6 COMMON Statements • • . • • .• • 38
6.7 EQUIVALENCE Statements. . • .. • 39
6.8 DATA Initialization Statement •.•• 41
6.9 IMPLICIT Statement .' ••••••.•• 43

SECTION 7 FORTRAN Control Statements • 44

7.1 GOTO Statements • • • • • • • 45
7.1.1 Unconditional GOTO • . • • • 45
7.1.2 Computed GOTO • • • . • 46
7 .• 1.3 Assigned GOTO • • • • . •• 47
7.2 ASSIGN Statement. • .•• 48
7.3 IF Statement. • • . • • • • •• • 49
7.3.1 Arithmetic IF • • • • • • • 49
7.3.2 Logical IF •.••••••••••• 50
7.4 DO Statement. • • •• 51
7 • 5 CONTINUE Statement • • • • • •• • 54
7.6 STOP Statement. • • • • •• • 55
7.7 PAUSE Statement • 55
7.8 CALL Statement. • • • • • • • • • 56
7.9 RETURN Statement. • •• • 56
7.10 END Statement • • • • 56

SECTION 8 Input/Output • 57

8.1 Formatted READ/WRITE. . ••••• 58
8.1.1 Formatted READ. • • • . . •• . 58
8.1.2 Formatted WRITE Statements •.•.. 61
8.2 Unformatted READ/WRITE. . . •. • 62
8.3 Disk File I/O . • . • • . . •. . 63
8.3.1 Random Disk I/O • • • • 63
8.3. 2 OPEN Subrou tine • • . • 64
8.4 Auxiliary I/O Statements. •• •• 64
8.5 ENCODE/DECODE ••.••.•...•. 65
8.6 Input/Output List Specifications • 65
8.6.1 List Item Types .••••••.•. 66
8.6.2 Special Notes on List

Specifications • •• .•.•.. 67
8.7 FORMAT Statements • . • . . • 68
8.7.1 Field Descriptors .•••.•• 69
8.7.2 Numeric Conversions •.•.•.•• 70
8.7. 3 Holler i th Conver sions . • . • . • • 74

,8.7.4 Logical Conversion . • . • •. . 76
8.7.5 X Descriptor •••...••..•• 77
8.7.6 P Descriptor ••..•.•.•••. 78
8.7. 7 Special Contro,l Features

of FORMAT Statements • . • . •. 79
8.7.7.1 Repeat Spec{fications 79
8.7.7.2 Field Separators. 80
8.7.8 FORMAT Control, List Specifications,

and Record Demarcation . • • . . • . 81
8.7.9 FORMAT Carriage Control •.•.•. 83
8.7.10 FORMAT Specifications in Arrays •. 83

SECTION 9 Functions and Subprograms • • 85

9.1 PROGRAM Statement • •• • 86
9.2 Staten:tent Functions . • • •••• 86
9.3 Library Functions •••..••••• 87
9.4 Function Subprograms • • . . • • • • • 91
9.5 Construction of Function Subprograms. 91
9.6 Refere~cing a Function Subprogram •• 93
9.7 Subroutine Subprograms. • • . • .• 94
9.8 Construction of Subroutine Subprograms 94
9.9 Referencing a Subroutine Subprogram • 96
9.10 Return From Function and Subroutine

Subprograms • • • • • • • • • • • • • 97
9.11 Processing Arrays in Subprograms ••• 98
9.12 BLOCK DATA Subroutine •••• 100
9.13 Program Chaining • • • • • • • .• ., 101

APPENDIX A- Language Extensions and Restrictions .102

APPENDIX B- I/O Interface • . •

APPENDIX C- Subprogram Linkages •

APPENDIX D- ASCII Charac,ter 'Codes •

APPENDIX E- Referencing FORTRAN-80 Library

.104

• .. 106

.. 108

Subroutines ••.•••••••• 0 ., .109

FORTRAN-80 Reference Manual Page 7

SECTION I

INTRODUCTION

FORTRAN is a universal, problem oriented programming
language designed to simplify the preparation and check-out
of computer programs. The name of the language - FORTRAN
is an acr.onym for FORmula TRANslator.

The syntactical rules for using the language are rigorous
and require the programmer to define fully the
characteristics of a problem in a series of precise
statements. These statements, called the source program,
are translated by a system program called the FORTRAN
processor into an object program in the machine language of
the computer on which the program is to be executed.

This manual defines the FORTRAN source language for the 8080
and Z-80 microcomputers. This language includes the
American National Standard FORTRAN language as described in
ANSI document X3.9-1966, approved on March 7, 1966, plus a
number of language extensions and some restrictions. These
language extensions and restrictions are described in the
text of this document and are listed in Appendix A.

NOTE

This FORTRAN differs from the
Standard in that it does not
include the COMPLEX data type.

Examples are included throughout the manual to illustrate
the construction and use of the language elements. The
programmer should be familiar with all aspects of the
language to take full advantage of its capabilities.

Section 2 describes the form and components of an FORTRAN-80
source program. Sections 3 and 4 define data types and
their expressional relationships. Sections 5 through 9
describe the proper construction and usage of the various
statement classes.

FORTRAN-SO Reference Manual Page 8

SECTION 2

FORTRAN PROGRAM FORM

FORTRAN-SO source programs consist
called the Main program and any
call~d subprograms. A discussion of
methods of writing and using them
manual.

of one program unit
number of program units

subprogram types and
is in Section 9 of this

Programs and program units are constructed of an ordered set
of statements which precisely describe procedures for
solving problems and which also define information. to be
used by the FORTRAN processor during compilation of the
object program. Each statement is written using the FORTRAN
character set and following a prescribed line format.

2.1 FORTRAN CHARACTER SET

2.1.1

2.1.2

2.1.3

To simplify reference and explanation, the FORTRAN
character set is divided into four subsets and a
name is given to each.

LETTERS

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,
V,W,X,y,Z,$'

No distinction is made between upper and lower case
letters. However, for clarity and legibility,
exclusive use of upper case letters is recommended.

DIGITS

0,1,2,3,4,5,6,7,8,9

Strings of digits representing numeric quantities
are normally interpreted as decimal numbers.
However, in certain statements, the interpr~tation
is in the Hexadecimal number system in which case
the letters A, B, C, D, E, F "may also be used as
Hexadecimal digits. Hexadecimal usage is defined
in the descriptions of statements in which such
notation is allowed.

ALPHANUMERICS

A sub-set of characters made up of all letters and
all digits.

FORTRAN-80 Reference Manual Page 9

2.1.4 SPECIAL CHARACTERS

=
+

*
/
(
)
,

NOTES:

Blank
Equality Sign
Plus Sign
Minus Sign
Asterisk
Slash
Left. Parenthesis
Right Parenthesis
Comma
Decimal Point

1. FORTRAN program lines consist of 80 character
positions or columns, numbered 1 through 80.
They are divided into four fields.

2. The following special characters are classified
as Arithmetic Operators and are significant in
the unambiguous statement of arithmetic
expressions.

+ Addition or Positive Value
Subtraction or Negative Value

* Multiplication
/ Division

3. The other special characters have specific
application in the syntactical expression of
the FORTRAN language and in the construction of
FORTRAN statements.

4. Any printable character may appear
Hollerith or Literal field.

in a

2.2 . FORTRAN LINE FORMAT

A FORTRAN program line consists of up to 80
columns, divided into four fields:

1. Statement Label (or Number) field- Columns 1
through 5 (See definition of statement labels).

2. Continuation character field
Column 6

3. Statement field
Columns 7 through 72

4. Indentification field
Columns 73 through 80

FORTRAN-80 Reference Manual Page 10

The identification field is available for any
purpose the FORTRAN programmer may desire and is
ignored by the FORTRAN processor.

The lines of a FORTRAN statement are placed in
Columns 1 through 72 formatted according to line
types. The four line types, their definitions, and
column formats are:

1. Initial Line
statement.

the first or only line of each

1. Columns 1-5 may contain a statement label
to identify the statement.

2. Column 6 must be blank.

3. Columns 7-72 contain all or part of the
statement.

4. An initial line may begin anywhere within
the statement field.

Example:

C THE STATEMENT BELOW CONSISTS
C OF AN INITIAL LINE
C

A= .5*SQRT(3-2.*C)

2. Continuation Line -- used when additional lines
of coding are required to complete a statement
originating with an initial line.

1. Columns 1-5 are ignored, unless Column 1
contains a C.

2. If Column 1 contains a C, it is a comment
line.

3. Column 6 must contain a character other
than zero or blank.

4. Columns 7-72 contain the continuation of
the statement.

5. There may be as many continuation lines as
needed to complete the statement.

FORTRAN-ao Reference Manual Page 11

3.

Example:

C THE STATEMENTS BELOW ARE AN INITIAL LINE
C AND 2 CONTINUATION LIN~S
C

63 BETA(1,2) =
1 A6BAR**7-(BETA(2,2)-ASBAR*50
2 +SQRT (BETA(2,1»)

Comment line -- used
annotation at the
programmer.

for source
convenience

1. Column 1 contains the letter C.

program
of the

2. Columns 2 - 72 are used in any desired
format to express the comment or they may
be left blank.

3. A comment line may be followed only by an
initial line, an END line, or another
comment line.

4. Comment lines have no effect on the object
program and are ignored by the FORTRAN
processor except for display purposes in
the listing of the program.

Example:

C COMMENT LINES ARE INDICATED BY THE
C CHARACTER C IN COLUMN 1.
C THESE ARE COMMENT LINES

4. END line -- the last line of a program unit.

1. Columns 1-5 may contain a statement label.

2. Column 6 must be blank.

3. Columns 7-72 contain the END statement.

4. Each FORTRAN program unit must have an END
line as its lasb line to inform the
Processor that it is at the ~hysical end of
the program unit.

5. An END line may follow any other type line.

A statement label may be placed in columns 1-5 of a
FORTRAN statement initial line and is used for

FORTRAN-SO Reference Manual Page 12

reference purposes in other statements.

The following considerations govern the use of
statement labels:

1. The label is an integer from 1 to 99999.

2. The numeric value of the label, leading zeros
and blanks are not significant.

3. A label must be unique within a program unit.

4. A label on a continuation line is ignored by
the FORTRAN Processor.

Example:

C EXAMPLES OF STATEMENT LABELS
'C

1
101

99999
763

2.3 STATEMENTS

Individual statements deal with specific aspects of
a procedure described in a program unit and are
classified as .either executable or non-executable.

Executable statements"specify actions and cause the
FORTRAN Processor to generate object program
instructions. There are three types of executable
statements:

1. Replacement statements.

2. Control statements.

3. Input/Output statements.

Non-executable statements describe to the processor
the nature and arrangement of data and provide
information about input/output formats and data
initialization to the object program during program
loading and execution. There are five types of
non-executable statements:

FORTRAN-SO Reference Manual Page 13

1. Specification statements.

2. DATA Initialization statements.
-

3. FORMAT statements.

4. FUNCTION defining statements.

5. Subprogram statements.

The proper usage and cons~ru~tion of the various
types of statements are described in Sections 5
through 9.

2.4 INCLUDE STATEMENT

The INCLUDE statement causes the compiler to bring
an outside FORTRAN source program into the current
program. The format of the statement is

INCLUDE<filename>

Use of INCLUDE eliminates the need to repeat an
often-used sequence of statements in the current
source file.

FORTRAN-80 Reference Manual Page 14

SECTION 3

DATA REPRESENTATION / STORAGE FORMAT

The FORTRAN Language prescribes a definitive method for
identifying data used in FORTRAN programs by ~ and ~.

3.1

3.1.1

DATA NAMES AND TYPES

NAMES

1. Constant - An explicitly stated datum.

2. Variable - A symbolically identified datum.

3. Array - An ordered set of data in 1, 2 or 3
dimensions.

4. Array Element - One member of ,the set of data
of an array.

3.1.2 TYPES

1. Integer -- Precise representation of integral
numbers (positive, negative or zero) having
precision to 5 digits in the range -32768 to +32767
inclusive (-2**15 to 2**15-1).

2. Real -- Approximations of real numbers (positive,
negative or zero) represented in computer storage
in 4-byte, floating-point form. Real data are
precise to 7+ significant digits and their
magnitude may lie between the approximate limits of
10**-38 and 10**38 (2**-127 and 2**127).

3. Double Precision -- Approximations of real numbers
(positive, negative or zero) represented in
computer storage in a-byte, . floating-point form.
Double Precision data are precise to 16+
significant digits in the same magnitude range as
real data.

4. Logical -- One byte representations of the truth
values "TRUE" or "FALSE" with "FALSE defined to
have an internal representation of zero. The
constant • TRUE. has the value -1, however any
non-zero value will be treated as • TRUE. 1n a
Logical IF statement. In addition, Logical types
may be used as one byte signed integers in the
range -128 to +127, inclusive.

FORTRAN-80 Reference Manual Page 15

5. Hollerith -- A string of any number of characters
from the computer's character set. All characters
inc-Iuding blanks are significant. Holleri th data
require one byte for storage of each character in
the string.

6. Extended Integer -- INTEGER*4 is
preC1Slon representation using
complement (four 8-bit bytes) for
digits in the range -2147483648
inclusive (-2**31 to 2**31-1).

an extended
32-bit two's

9+ significant
to +2147483647

Integer*4 variables cannot be used as Logical Unit
Numbers, array indices, implied DO loop indices, or
as the control variable in computed or assigned
GOTO statements.

3.2 CONSTANTS

FORTRAN constants are identified explicitly by
stating their actual value. The plus (+) character
need not precede positive valued constants.

Formats for writing constants are shown in Table
3-1.

FORTRAN-80 Reference Manual Page 16

TYPE

INTEGER

REAL

Table 3-1. CONSTANT FORMATS

FORMATS AND RULES OF USE -- ----

1. 1 to 5 decimal digits
interpreted as a deci
mal number.

2. A preceding plus (+) or
minus (-) sign is op
tional.

3. No decimal point (.) or
comma (,) is allowed but
spaces are permitted in
the source program.

4. Value range: -32768
through +32767 (. i. e. ,
-2**15 through 2**15-1).

1. A decimal number with
precision to 7 digits
and represented in one
of the following forms:

a. + or -.f + or -i.f
b. + or -i.E+ or -e

+ or -.fE+ or -e
+ or -i.fE+ or -e

where i, f, and e are
each strings represent
ing integer, fraction,
and exponent respectively.

2. Plus (+) and minus (-)
characters are optional.

3. In the form shown in 1 b
above, if r represents any
of the forms preceding
E+ or -e (i.e., rE+ or -e),
the value of the constant
is interpreted as r times
10**e, where -38=E=38.

EXAMPLES

-763
1

+00672

-32768
+32767

- 32 767

345.
-.345678
+345.678
+.3E3
-73E4

FORTRAN-80'Reference Manual

TYPE

DOUBLE

PRECISION

LOGICAL

FORMATS AND RULES OF USE

4. If the constant preceding
E+ or -e contains more
significant digits than
the precision for real
data allows, truncation
occurs, and only the
most significant digits
in the range will be rep
resented.

EXAMPLES

A decimal number with +345.678

precision to 16 digits. All +.303
formats and rules are identi- -7304
cal to those for REAL con-
stants, except 0 is used in
place of E. Note that a real
constant is assumed single pre
cision unless it contains a
"D rl exponent.

• TRUE. generates a non-zero .TRUE.
byte (hexadecimal FF) and .FALSE •
• FALSE. generates a byte in
which all hi t·s are 0 •

If logical values are
used as one-byte integers, the
rules for use are the same as
for type INTEGER, except that
the range allowed is -128 to
+127, inclusive.

Page 17

FORTRAN-80 Reference Manual Page 18

TYPE

LITERAL

FORMATS AND RULES OF USE

In the literal form, any
number of characters may be
enclosed by single quotation
marks. The form is as follows:

'XIX2X3 ••• Xn'

where each Xi is any charac
ter other than '. Two
quotation marks in succession
may be used to represent the
quotation mark character
within the string, i.e.,
if X2 is to be the quotation
mark character, the string
appears as the following:

, Xl ' 'X3 ••• Xn '

EXAMPLES

HEXADECIMAL 1. The letter Z or X
followed by a single quote,
up to 4 hexadecimal

Z'12'

X'AB1F'
Z'FFFF'

INTEGER*4

digits (0-9 and A-F) and a
single quote is recognized
as a hexadecimal value.

2. A hexadecimal constant is
right justified .in its storage
value. .

X'lF'

1. One to ten decimal digits 1234567890
interpreted as a decimal 0
number.

2. A preceding plus or minus -2147483647
sign is optional.

3. No deciml point or comma - 2 147 483 647
is allowed, but spaces are
permitted in the source
program.

4. Value range: _
-2147483648 through 2147483647
(i.e., -2**31 through 2**31-1).

FORTRAN-80 Reference Manual Page 19

3.3 VARIABLES

Variable data are identified in FORTRAN statements
by symbolic names. The names are unique strings of
from 1 to 6 alphanumeric characters -of which the
first is a letter.

NOTE

System variable names and runtime
subprogram names are distinguished from
other variable names in that they begin
with the dollar sign character ($). It is
therefore strongly recommended that in
order to avoid conflicts, symbolic names in
FORTRAN source programs begin with some
letter other than "S".

Examples:

IS, TBAR, B23, ARRAY, XFM79, MAX, Al$C

Variable data are classified into four types:
INTEGER, REAL, DOUBLE PRECISION and LOGICAL. The
specification of type is accomplished in one of the
following ways:

1. Implicit typing in which the first letter of
the symbolic name specifies Integer or Real
type. Unless explicitly typed (2., below),
symbolic nameS beginning with I, J, K, L, M or
N represent Integer variables, and symbolic
names beginning with letters other than I, J,
K, L, M or N represent Real variables.

Integer Variables

ITEM
Jl
MODE
K123
N2

FORTRAN-SO Reference Manual

Real Variables

BETA
H2
ZAP
AMAT
XID

Page 20

2. Variables may be typed explicitly. That is,
they may be given a particular type without
reference to the first letters of their names.
Variables may be explicitly typed as INTEGER,
REAL, DOUBLE PRECISION or LOGICAL. The
specific statements used in explicitly typing
~ata are described in Section 6.

Variable data receive their numeric value assignments during
program execution or, initially,. in a DATA statement
(Section 6).

Hollerith or Literal .data may be assigned to any type
variable. Sub-paragraph 3.6 contains a discussion of
Hollerith data storage.

3.4 ARRAYS AND ARRAY ELEMENTS

An array is an ordered. set of data characterized by
the property of dimension. An array may have 1, 2
or 3 dimensions and is identified and typed by a
symbolic name in the same manner as a variable
except that an array name must be so declared by an
"array declarator." Complete discussions of the
array declarators appear in Section 6 of this
manual. An array declarator also indicates the
dimensionality and size of the array. An array
element is one member of the data set that makes up
an array. Reference to an array element in a
FORTRAN statement is made by appending a subscript
to the array name. The term array element is
synonymous with the term subscripted variable used
in some FORTRAN texts and reference manuals.

An initial value may be assigned to any array
element by a DATA statement or its value may be
derived and defined during program execution.

FORTRAN-BO Reference Manual Page 21

3.5 SUBSCRIPTS

A subscript follows an array name to uniquely
identify an array element. In use, a subscript in
a FORTRAN statement takes on the same
representational meaning as a subscript in familiar
algebraic notation.

Rules that govern the use of subscripts are as
follows:

1. A subscript
expressions
parentheses.

contains
(see 4

1, 2 or
below)

3 subscript
enclosed in

2. If there are two or three subscript expressions
·within the parentheses, they must be separated
by commas.

3. ~he number of subscript expressions must be the
same as the specified dimensionality of the
Array Declarator except in EQUIVALENCE
statements (Section 6).

4. A subscript expression is written in one of the
following forms:

5.

K C*V
V C*V+K
V+K

V-K
C*V-K

where C and K are
integer variable

integer constants and
name (see Section

discussion of expression evaluation) •

V is an
4 for a

Subscripts themselves may not be subscripted.
Examples:

X(2*J-3,7) A(I,J,K) I(20) C(L-2) Y (I)

FORTRAN-SO Reference Manual Page 22

3.6 DATA STORAGE ALLOCATION

Allocation of storage for FORTRAN data is made in
numbers of storage units. A storage unit is the
memory space required to store ·one real data value
(4 bytes).

Table 3-2 defines the word formats of the three
data types.

Hexadecimal data may be associated (via a DATA
statement) with any type data. Its storage
allocation is the same as the associated datum.

Hollerith or literal data may
any--- -data type by use of
statements (Section 6)~

be associated with
DATAinitializaton

Up to eight Hollerith characters may be associated
with Double Precision type storage, up to four with
Real or Integer*4, up to two with Integer*2, and
one with Logical type storage.

FORTRAN-80 Reference Manual Page 23

TYPE

INTEGER

LOGICAL

REAL

TABLE 3-2. STORAGE ALLOCATION BY DATA TYPES

ALLOCATION

2 bytes/ 1/2 storage unit

S Binary Value

Negative numbers are the two's complement of
positive representations. The storage order
is reversed. The least significant byte is
followed by the most significant byte.

1 byte/ 1/4 storage unit

I Zero I (fal'se) or I non-zerol (true)

A non-zero valued byte indicates true (the
logical constant . TRUE. is represented by
the hexadecimal value FF). A zero valued
byte indicates false.

When used as an arithmetic value, a Logical
datum is treated as an Integer in the range
-128 to +127.

4 bytes/ 1 storage unit

Characteristic S I Mantissa (hi)
Mantissa (mid) Mantissa (low)

The first byte is the characteristic
expressed in excess 200 (octal) notation;
i.e., a value of 200 (octal) corresponds to a
binary exponent of o. Values less than 200
(octal) correspond to negative exponents, and
values greater than 200 correspond to
positive exponents. By definition, if the
characteristic is zero, the entire number is
zero.

The next three bytes constitute the mantissa.
The mantissa is always normalized such that
the high order bit is one, eliminating the
need to actually save that bit. The high bit
is used instead to indicate the sign of the
number. A one indicates a negative number,
and zero indicates a positive number. The
mantissa is assumed to be a binary fraction
whose binary point is to the left of the
mantissa. The format of the mantissa is
"signed magnitude." The bytes are stored in

FORTRAN-ao Reference Manual Page 24

DOUBLE
PRECISION

INTEGER*4

reverse order: mantissa low order, followed
by mid order, high order, and characteristic.

a bytes/ 2 storage units

The internal form of Double Precision data is
identical with that of Real data except
Double Precision uses 4 extra bytes for the
matissa.

4 bytes/ 1 storage unit

Negative numbers are represented in two's
90mplement form. The bytes are stored in
reverse order', least significant. to most
signific.ant.

TABLE 3-3. EQUIVALENT DATA TYPES AND SIZES

Eguivalent Representations· Size .-- in Bytes

BYTE 1
INTEGER*l 1
LOGICAL 1

INTEGER 2
INTEGER*2 2
LOGICAL*2 2

INTEGER*4 4
LOGICAL*4 4

REAL 4
REAL*4 4

DOUBLE PRECISION a
REAL * a a

FORTRAN-80 Reference Manual Page 25

SECTION 4

FORTRAN EXPRESSIONS

A FORTRAN expression is composed of a single operand or a
string of operands connected by operators. Two expression
types --Arithmetic and Logical-- are provided by FORTRAN.
The operands, operators and rules of use for both types are
described in the following paragraphs.

4.1 ARITHMETIC EXPRESSIONS

The following rules define
arithmetic expression forms:

all permissible

1. A constant, variable name, array element
reference or FUNCTION reference (Section 9)
standing alone is an expression.

Examples:

SCI) JOBNO 217 17.26 SQRT(A+B)

2. If E is an expression whose first character is
not an operator, then +E and -E are called
signed expressions.

Examples:

-S +JOBNO -217 +17.26 -SQRT(A+B)

3. If E is an expression, then (E) means the
quantity resulting when E is evaluated.

Examples:

(-A) -(JOBNO) -(X+l) (A-SQRT(A+B»)

4. If E is an unsigned expression and F is any
expression, then: F+E, F-E, F*E, FIE and F**E
are all expressions.

Examples:

-(B(I,J)+SQRT(A+B(K,L»))
l.7E-2**(X+S.O)
-(B(I+3,3*J+5)+A)

5. An evaluated expression may be Integer,
Extended Integer, Real, Double Precision, or
Logical. The type is determined by the data
types of the elements of the expression. If

FORTRAN-SO Reference Manual Page 26

the elements of the expression are not all of
the same type, the type of the expression is
determined by the element having the highest
type. The type hierarchy (highest to lowest)
is as follows: DOUBLE PRECISION, REAL,
INTEGER*4, INTEGER, LOGICAL.

6. Expressions may contain nested parenthesized
elements as in the following:

A*(Z-«Y+X)/T»**J

where Y+X is the innermost element, (Y+X)/T is
the next innermost, Z-«Y+X)/T) the next. In
such expressions, care should be taken to see
that the number of left parentheses and the
number of right parentheses are equal.

4.2 EXPRESSION EVALUATION

Arithmetic expressions are evaluated according to
the following rules:

1. Parenthesized expression elements are evaluated
first. If parenthesized elements are nested,
the innermost elements are evaluated, then the
next innermost until the entire expression has
been evaluated.

2. Within parentheses and/or wherever parentheses
do not govern the' order- or evaluation, the
hierarchy of operations in order of precedence
is as follows:

a. FUNCTION evaluation
b. Exponentiation
c. Multiplication and Division
d. Addition and Subtraction

Example:

The expression

A*(Z-«Y+R)/T»**J+VAL

is evaluated in the following sequence:

el = Y+R
e2 = (el)/T
e3 = Z-e2
e4 = e3**J
e5 = A*e4
e6 = e5+VAL

FORTRAN-BO Reference Manual Page 27

3. The expression x**y**z is not allowed. It
should be written as follows:

(x**y) **Z orX* * (y* *Z)

4. Use of an array element reference requires the
evaluation of· its subscript. Subscript
expressions are evaluated under the same rules
as other expressions.

4.3 LOGICAL EXPRESSIONS

A Logical Expression may be any of the following:

1. A single Logical Constant (i.e., . TRUE. or
.FALSE.), a Logical variable, Logical Array
Element or Logical FUNCTION reference (see
FUNCTION, Section 9).

2. Two arithmetic expressions separated by a
relational operator (i.e., a relational
expression).

3. Logical operators acting upon logical
constants, logical variables, logical array
elements, . log ical FUNCTIONS, relational
expressions or other logical expressions.

The value of a logical expression is always either
• TRUE. or • FALSE.

FORTRAN-80 Reference Manual Page 28

4.3.1 RELATIONAL EXPRESSIONS

The general form of a relational expression is as
follows:

el r e2

where el and e2 are arithmetic expressions and r is
a relational operator. The six relational
operators are as follows:

.LT. Less Than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

The value of the relational expression is • TRUE.
if the condition defined by the operator is met.
Otherwise, the value is • FALSE.

Examples:

A.EQ.B
(A**J).GT. (ZAP*(RHO*TAU-ALPH»

FORTRAN-SO Reference Manual Page 29

4.3.2 LOGICAL OPERATORS

Table 4-1 lists the logical operations.
denote log ica1 expressions ..

U and V

Table 4-1. Logical Operations

.NOT.U

U.AND.V

U.OR.V

U.XOR.V

Examples:

The value of this expression is the
logical complement of U (i.e., 1
bits become a and a bits become 1).

The value of this expression is the
logical product of U and V (i.e.,
there is a 1 bit in the result only
where the corresponding bits in both
U and V are 1.

The value of this expression is the
logical sum of U and V (i.e., there
is a 1 in the result tf the
corresponding bit in U or V is 1 or
if the corresponding bits in both U
and V are 1.

The value of this expression is the
exclusive OR of U and V (i.e., there
is a one in the result if the
corresponding bits in U and V are 1
and 0 or 0 and 1 respectively.

If U = 01101100 and V = 11001001 , then

.NQT.U
U.AND.V
U.OR.V
U.XOR.V

=
=
=
=

10010011
01001000
11101101
10100101

FORTRAN-80 Reference Manual Page 30

The following are additional considerations for
construction of Logical expressions:

1. Any Logical expression may be enclosed in
parentheses. However, a Logical expression to
which the .NOT. operator is applied must be
enclosed in parentheses if it contains two or
more elements.

2. In the hierarchy of operations, parentheses may
be used to specify the ordering of the
expression evaluation. Within parentheses, and
where parentheses do not dictate evaluation
order, the order is understood to be as
follows:

a. FUNCTION Reference
b. Exponentiation (**)
c. Multiplication and Division (* and /)
d. Addition and Subtraction (+..and -)
e. • LT., • LE., • EQ., • NE., • GT., • GE.
f. .NOT.
g. .AND.
h. .OR., .XOR.

Examples:

The expression

x • AND. Y • OR. B (3 ,2) .• GT. Z

is evaluated as

el = B(3,2).GT.Z
e2 = X . AND. Y
e3 = e2 .OR. el

The expression

X • AND. (Y .OR. B(3,2) .GT. Z)

is evaluated as

e 1 = B (3 , 2) • GT • Z
e2 = Y .OR. el
e3 = X • AND. e2

FORTRAN-80Reference Manual Page 31

3. It is invalid to have two contiguous logical
operators except when the second operator is
.NOT. That is,

. AND •. NOT.

and

.OR •• NOT.

are permitted.

Example:

A.AND •• NOT.B is permitted

A.AND •• OR.B is not permitted

4.4 HOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS IN
EXPRESSIONS

Hollerith, Literal, and Hexadecimal constants are
allowed in expressions in place of Integer
constants. These special constants always evaluate
to an Integer value and are therefore limited to a
length of two bytes. The only exceptions to this
are:

l~ Long Hollerit~ or Literal constants may be used
as subprogram parameters.

2. Hollerith, Literal, or Hexadecimal constants
may be up to four bytes long in DATA statements
when associated with Real variables, or up to
eight bytes long when associated with Double
Precision variables.

-,":

FORTRAN-SO Reference Manual Page 32

SECTION 5

REPLACEMENT STATEMENTS

Replacement statements define computations and are used
similarly to equations in normal mathematical notation.
They are of the following form:

v = e

where v is any variable or array element and e is an
expression.

FORTRAN semantics defines the equality sign (=). as meaning
to be replaced ~ rather than the normal is equivalent to.
Thus, the object program instructions generated by a
replacement statement will, when executed, evaluate the
,expression.·on·the right of the equality sign" and place that
result in the storage space allocated to the variable or
array element on the left of the equality sign.

The following conditions apply to replacement statements:

1. Both v and the equality sign must appear on the
same line. This holds even when the statement is
part of a logical IF statement (section 7).

Example:

C IN A REPLACEMENT STATEMENT .THE '='
C MUST BE IN THE INITIAL LINE.

A(S,3) =
1 B(7,2) + SINce)

The line containing v= must be the initial line of
the statement unless the statement is part of a
logical IF statement. In that case the v= must
occur no later than the end of the first line after
the end of the IF.

2. If the data types of the variable, v, and the
expression, e, are different, then the value
determined by the expression will be converted, if
possible, to conform to the typing of the variable.
Table 5-1 shows which type expressions may .be
equated to which type of variable. Y indicates a
valid replacement and N indicates an invalid
replacement. Footnotes to Y indicate conversion
considerations.

FORTRAN-SO Reference Manual Page 33

Table 5-1. Replacement By Type

Expression Types (e)
Variable
Types Integer Real Logical Double Ext Int

Integer y Ya Yb Ya Yg
Real Yc Y Yc Ye Yc
Logical Yd Ya Y Ya Yd
Double Yc Y Yc Y Yc
Ext Int yf Yh Yb,f Yh Y

a. The Real expression value is converted to Integer,
truncated if necessary to conform to the range of
Integer data.
b. The sign is extended through the second byte.
c. The variable is assigned the Real approximation of
the Integer value of the expression.
d. The variable is assigned the truncated value of the
Integer expression (the low-order byte is used,
regardless of sign).
e. The variable is assigned the rounded value of the
Real expression.
f. The sign is extended through the third and fourth
bytes.
g. The variable is assigned the truncated value of the
Extended Integer expression.
h. The expression value is converted to Extended
Integer and truncated to conform to the range of
Extended Integer data.

FORTRAN-80 Reference Manual Page 34

SECTION 6

SPECIFICATION STATEMENTS

Specification statements are non-executab1e, non-g~nerative
statements which define data types of variables and arrays,
specify array dimensionality and size, allocate data storage
or otherwise supply determinative information to the FORTRAN
processor. DATA intialization statements are
non-executable, but generate object program data and
establish initial values for variable data.

6.1 SPECIFICATION STATEMENTS

There are seven kinds of specification statements.
They are as follows:

IMPLICIT statements
Type, EXTERNAL, and DIMENSION statements
COMMON statements
EQUIVALENCE statements
DATA initialization statements

All specification statements are grouped at the.
beginning of a program unit and must be ordered as
they appear above. Specification statements may be
preceded only by a FUNCTION, SUBROUTINE, PROGRAM or
BLOCK DATA statement. ·All specification statements
must precede statement functions and· the first
executable statement.

6.2 ARRAY DECLARATORS

Three kinds of specification statements may specify
array declarators. These statements are the
following:

Type statements
DIMENSION statements
COMMON statements

Of these, DIMENSION statements have the declaration
of arrays as their sole function. The other two
serve dual purposes. These statements are defined
in subparagraphs 6.3, 6.5 and 6.6.

Array declarators are used to specify the name,
dimensionality and sizes of arrays. An array may
be declared only once in a program unit.

FORTRAN-80 Reference Manual Page 35

An array declarato~ has one of the following forms:

ui (k)
ui (kl, k2)
ui (kl,k2,k3)

where ui is the name of the array, called the
declarator name, and the k's are integer constants.

Array storage allocation is established upon
appearance of the array declarator. Such storage
is allocated linearly by the FORTRAN processor
where the order of ascendancy is determined by the
first subscript varying most rapidly and the last
subscript varying least rapidly.

For example, if the array declarator AMAT{3,2,2)
appears, storage is allocated for the 12 elements
in the following order:

AMAT{l,l,l), AMAT(2,l,l), AMAT(3,l,1), AMAT(1,2,l),
AMAT(2,2,1), AMAT(3,2,l), AMAT(l,1,2), AMAT(2,l,i),
AMAT(3,l,2), AMAT(l,2,2), AMAT(2,2,2), AMAT(3,2,2)

6.3 TYPE STATEMENTS

Variable, array and FUNCTION names are
automatically typed Integer or Real by the
~predefined'convention unless they are changed by
Type statements. For example, the type is Integer
if the'first letter of an item is I, J, K, L, M or
N. Otherwise, the type is Real.

Type statements provide for .,overriding or
confirming the pre-defined convention by specifying
the type of an item. In addition, t.hese statements
may be used to declare arrays.

Type statements have the following general form:

t vl,v2, ••• vn

where t represents one of the terms INTEGER,
INTEGER*l, INTEGER*2, INTEGER*4, REAL, REAL*4,
REAL*8, DOUBLE PRECISION, LOGICAL, LOGICAL*l,
LOGICAL*2, LOGICAL*4, or BYTE. Each v is an array
declarator or a variable, array or FUNCTION name.
The INTEGER*1, INTEGER*2, INTEGER*4, REAL*4,
REAL * 8 , LOGICAL*l, LOGICAL*2, LOGICAL*4 types are
allowed for readability and compatibility with
other FORTRANs.

FORTRAN-SO Reference Manual Page 36

Example:

REAL AMAT(3,3,S) ,BX,IETA,KLPH

NOTE

1. AMAT and BX are redundantly typed.
2. lETA and KLPH are unconditionally
declared Real.
3. AMAT(3,3,5) is a constant array
declarator specifying an array of 45
elements.

Example:

INTEGER MI, HT, JMP(15) , FL

NOTE

Ml is redundantly typed here. Typing of HT
and FL by the pre-defined convention is
overridden by their appearance in the
INTEGER statement. JMP(15) is a constant
array declarator. It redundantly types the
array elements as Integer and communicates
to the processor the storage requirements
and dimensionalit~ of .the array.. .

Example:

LOGICAL LI, TEMP

NOTE

All variables, arrays or FUNCTIONs required
to be typed Logical must appear in a
LOGICAL statement, since-no-starting letter
indicates these types by the default
convention.

FORTRAN-80 Reference Manual Page 37

6.4 EXTERNAL STATEMENTS

EXTERNAL statements have the following form:

EXTERNAL ul,u2, ..• ,un

where each ui is a SUBROUTINE, BLOCK DATA or
FUNCTION name. When the name of a subprogram is
used as an argument in a subprogram reference, it
must have appeared in a preceding EXTERNAL
statement.

When a BLOCK DATA subprogram is to be included in a
program load, its name must have appeared in an
EXTERNAL statement within the main program unit.

For example, if SUM and AFUNC are subprogram names
to be used as arguments in the subroutine SUBR, the
following statements would appear in the calling
program unit:

EXTERNAL SUM, AFUNC

CALL SUBR(?UM,AFUNC,X,Y)

6.S DIMENSION STATEMENTS

A DIMENSION statement has the following form:

DIMENSION u2,u2,u3, ••• ,un

where each ui is an array declarator.

Example:

DIMENSION RAT(S,S) ,BAR(20)

This statement declares two arrays - the 2S element
array RAT and the 20 element array BAR.

FORTRAN-80 Reference Manual Page 38

6.6 COMMON STATEMENTS

COMMON statements are non-executable, storage
allocating statements which assign variables and
arrays to a storage area called COMMON storage and
provide the facility for various program units to
share the use of the same storage area.

COMMON statements are expressed in the following
form:

COMMON /yl/al/y2/a2/ •.• /yn/an

where each yi is a COMMON block storage ~ and
each ai is a sequence of variable names, array
names or constant array declarators, separated by
commas. The elements in ai make up the COMMON
block storage area specified by the name yi. If
any yi is omitted leaving two consecutive slash
cnaract'ers (/ /), the block of storage so indicated
is called blank COMMON.' If the first block name
(yl) is omitted, the two slashes may be omitted.

Example:

COMMON /AREA/A,B,C/BDATA/X,Y,Z,
X FL,ZAP(30)

In this example, two blocks of COMMON storage are
allocated ~ AREA with space for three variables and
BDATA, with space for four variables and the 30
element array, ZAP.

Example:

COMMON //Al,Bl/CDATA/ZOT(3,3)
X //T2,Z3

In this example, AI, Bl, T2 and Z3 are assigned to
. blank COMMON in that order. The pair of slashes

preceding Al could have been omitted.

CDATA names COMMON block storage for the nine
element array, ZOT and thus ZOT (3,3) is an array
declarator. ZOT must not have been previously
declared. (See "ArrayDeclarators," Paragraph
6.3.)

Additional Considerations:

1. The name of a COMMON block may appear more than
once in the same COMMON statement, or in more
than one COMMON statement.

FORTRAN-80 Refer,enceManual Page 39

2. A COMMON block name is made up of from 1 to 6
alphanumeric characters, the first of which
must be a letter.

3. A COMMON block name must be different from any
subprogram names used throughout the program.

4. The size of a COMMON area may be increased
the use of EQUIVALENCE statements.
"EQUIVALENCE Statements," Paragraph 6.7.

by
See

5. The lengths of COMMON blocks of the same name
need not be identical in all program units
where the name appears. However, if the
lengths differ, the program unit specifying the
greatest length must be loaded first (see the
discussion of LINK-80 in the User's Guide).
The length of a COMMON area is the number of
storage units required to contain the variables
and arrays declared in the COMMON statement (or
statements) unless expanded by the use of
EQUIVALENCE statements.

6.7 EQUIVALENCE STATEMENTS

Use of EQUIVALENCE statements permits the sharing
of the same storage unit by two or more entities.
The general form of the statement is as follows:

EQUIVALENCE (ul), (u2) , ••• , (un)

where each ui represents a sequence of two or more
variables or array elements, separated by commas.
Each element in the sequence is assigned the same
storage unit (or portion of a storage unit) by the
processor. The order in which the elements appear
is not significant.

Example:

EQUIVALENCE (A,B,C)

The variables A, Band C will share the same
storage unit during object program execution.

If an array element is used in an EQUIVALENCE
statement, the number of subscripts must be the
same as the number of dimensions established by the
array declarator, or it must be one, where the one
subscript specifies the array element's number
relative to the first element of the array.

FORTRAN-SO Reference Manual Page 40

Example:

If the dimensionaliity of an array, Z, has been
declared as Z(3,3} then in an EQUIVALENCE statement
Z(6) and Z(3,2} have the same meaning.

Additonal Considerations:

1. The subscripts of array elements must be
integer constants.

2. An element of a multi-dimensional array may be
referred to by a single subscript, if desired.

3. Variables may be assigned to a COMMON block
through EQUIVALENCE statements.

EXample:

COMMON /X/A,B,C
EQUIVALENCE (A,D)

In this case, the variables A and D share the
first storage unit in COMMON block X.

4. EQUIVALENCE statements can increase the size of
a block indicated by a COMMON statement by
adding more elements to the end of the block.

Example:

DIMENSION R(2,2)
COMMON /Z/W,X,y
EQUIVALENCE (Y,R(3»

The resulting COMMON block will have the
following configuration:

Variable Storage Unit

W = R(l,l) a
x = R(2,l) 1
Y = R(l,2) 2

R(2,2) 3

The COMMON block established by the COMMON
statement contains 3 storage units. It is
expanded to 4 storage units by the EQUIVALENCE
statement.

COMMON block size may be increased only from
the last element established by the COMMON
statement forward; not from its first element
backward.

FORTRAN-80 Reference Manual Page 41

Note that EQUIVALENCE (X,R(3» would be invalid
in the example. The COMMON statement
established w as the first element in the
COMMON block and an attempt to make X and R(3}
equivalent would be an attempt to make R(l) the
first element.

5. It is invalid to EQUIVALENCE two elements of
the same array or two elements belonging to the
same or different COMMON blocks.

Example:

DIMENSION XTABLE (20), 0(5)
COMMON A,B(4)jZAP/C,X

EQUIVALENCE (XTABLE (6) ,A(7) ,
X B (3) ,XTABLE (15)) ,
Y (B(3) ,0(5»

This EQUIVALENCE statement has
errors:

the following

1. It attempts to EQUIVALENCE two elements of the
same array, XTABLE(6) and XTABLE(15) .

2. It attempts to EQUIVALENCE two elements of the
same COMMON block, A(7) and B (3) •

3. Since A is not an array, A (7) is an illegal
reference.

4. Making B(3) equivalent to 0(5) extends COMMON
backwards from its defined starting point.

6.8 DATA INITIALIZATION STATEMENT

The DATA initialization statement is a
non-executable statement which provides a means of
compiling data values into the object program and
assigning these data to variables and array
elements referenced by other statements.

The statement is of the following form:

DATA list/ul,u2, ••. ,un/,list .•. /uk,uk+I, .•. uk+n/

where "list" represents a list of variable, array
or array element names, and the ui are constants

FORTRAN-SO Reference Manual Page 42

corresponding in number to the elements in the
list. An exception to the one-for-one
correspondence of list items to constants is that
an array name (unsubscripted) may appear in the
list, and as many constants as necessary to fill
the array may appear in the corresponding position
between slashes. Instead of ui, it is permissible
to write k*ui in order to declare the same
constant, ui, k times in succession. k must be a
positive integer. Dummy arguments may not appear
in the list. '

Example:

DIMENSION C(7)
DATA A, B, C (1) ,C (3) /14 • 73 ,

X -8.1,2*7.5/

This implies that

A=14.73, B=-8.1, C(l)=7.5, C(3)=7.5

The type of each constant ui must match the type of
the corresponding item in the list, except that a
Hollerith or Literal constant may be paired with an
item of any type.

When a Hollerith or Literal constant is used, the
number of characters in its string should be no
greater than four times the number of storage units
required by the corresponding item, i.e., 1
character for a Logical variable, up to 2
characters for an Integer variable and 4 or fewer
characters for a Real variable.

If fewer Hollerith
specified, trailing
remainder of storage.

or Literal characters are
blanks are added to fill the

Hexadecimal data are stored in a similar fashion.
If fewer Hexadecimal characters are used,
sufficient leading zeros are added to fill the
remainder of the storage unit.

FORTRAN-80 Reference Manual Page 43

The examples below illustrate many of the features
of the DATA statement.

DIMENSION HARY (2)
DATA HARY,B/ 4HTHIS, 4H OK.

1 ,7.86/

REAL LIT(2)
LOGICAL LT,LF
DIMENSION H4(2,2) ,PI3(3)
DATA Al, Bl, Kl, LT, LF, H4 (1,1) , H4 (2,1) ,

1 H4(1,2) ,H4(2,2) ,PI3/5.9,2.5E-4,
2 64,.FALSE.,.TRUE.,1.75E-3,
3 O.85E-l,2*75.0,1.,2.,3.14l59/,
4 LIT(l)/'NOGO'/

659 IMPLICIT STATEMENT

The IMPLICIT statement is used to redefine default
variable types. The syntax is:

IMPLICIT type (range) ,type (range) , •••

where type is one of the following: INTEGER, REAL,
LOGICAL, DOUBLE PRECISION, BYTE, INTEGER*l,
INTEGER*2, INTEGER*4,-REAL*4, REAL*8

and range is a list of alphabetic characters
separated by commas or hyphens.

Examples:

IMPLICIT INTEGER(A,W-Z) ,REAL (B-V)

All variables (not otherwise declared) starting
with the letters A, W, X, Y, Z will be type
INTEGER. All variables starting with the letters B
through V will be type REAL.

IMPLICIT INTEGER(I-N) ,REAL(A-H,O-Z)

This is the default definition.

Any IMPLICIT statements must appear in a program
grouped with the Type and DIMENSION statements.
IMPLICIT statements must appear before any other
specification statements. If the IMPLICIT
statement appears after any Type or DIMENSION
statements, the types of the variables already
declared will 'not be affected.

FORTRAN-SO Reference Manual Page 44

SECTION 7

FORTRAN CONTROL STATEMENTS

FORTRAN control statements are executable statements
affect and guide the logical flow of a FORTRAN program.
statements in this category are as follows:

1. GO TO statements:

1. Uncondi tional' GO TO

2. Computed GO TO

3. Assigned GO TO

2. ASSIGN

3. IF statements:

1. Arithmetic IF.

2~ Logical IF

4. DO

5. CONTINUE

6. STOP

7. PAUSE

S. CALL

9. RETURN

10. END

which.
The

When statement labels of other statements are a part of a
control statement, such statement labels must be associated
with executable statements within the same program unit in
which the control statement appears.

FORTRAN-80 Reference Manual Page 45

7.1 GO TO STATEMENTS

7.1.1 UNCONDITIONAL GO TO

Unconditional GO TO statements are used whenever
control is to be transferred unconditionally to
some other statement within the program unit.

The statement is of the following form:

GO TO k

where k is the statement label of an executable
statement in the same program unit.

Example:

GO TO 376
310 A(7) = VI -A(3)

376 A(2) =VECT
GO TO 310

In these statements, statement 376 is ahead of
statement 310 in the logical flow of the program of
which they are a part.

FORTRAN-SO Reference Manual Page 46

7.1.2 COMPUTED GO TO

Computed GO TO statements are of the form:

GO TO (kl,k2, ••• ,n) ,j

where the ki are statement labels, and j is an
integer variable, 1 ~ j ~ n.

This statement causes transfer of control to the
statement labeled kj. If j < 1 or j > n, control
will be passed to the next statement following the
Computed GOTO.

Example:

J=3

GO TO (7, 70, 700, 7000, 70000), J
310 J=5

GO TO 325

When J = 3, the computed GO TO transfers control to
statement 70Q. ChangingJ to equal 5 changes the
transfer to statement 70000. Making J = a or J = 6
would cause control to be transferred to statement
310.

FORTRAN-80 Reference Manual Page 47

7.1.3· ASSIGNED GO TO

Assigned GO TO statements are of the following
form:

GO TO j,(kl,k2, ••• ,kn)

or

GOTO J

where J is
statement
statement
statement
of J.

an integer variable name, and the ki are
labels of executable statements. This
causes transfer of control to the

whose label is equal to the current value

Qualifications

1. The ASSIGN statement must logically precede an
assigned GO TO.

2. The ASSIGN statement must assign a value to J
which is a statement label included in the list
of kls, if the list is specified.

Example:

GO TO LABEL, (80,90, 100)

Only the statement labels 80, 90 or 100 may be
assigned to LABEL.

FORTRAN-80 Reference Manual

7.2 ASSIGN STATEMENT

This statement is of the following form:

ASSIGN j TO i

where j is a statement label of an
statement and i is an integer variable.

Page 48

executable

The statement is used in conjunction with each
assigned GO TO statement that contains the integer
variable i. When the assigned GO TO is executed,
control will be transferred to the statement
labeled j.

Example:

ASSIGN 100 TO LABEL

ASSIGN 90 TO LABEL
GO TO LABEL, (80,90,100)

FORTRAN-80 Reference Manual Page 49

7.3 IF STATEMENT

7.3.1

IF statements transfer control to one of a series
of statements depending upon a condition. Two
types of IF statements are provided:

Arithmetic IF
Logical IF

ARITHMETIC IF

The arithmetic IF statement is of the form:

IF(e) ml,m2,m3

where e is an arithmetic expression and ml, m2 and
m3 are statement labels.

Evaluation of expression e determines one of three
transfer possibilities:

If e is:
< a
= a
> 0

Examples:

Statement

IF (A)3,4,5
IF (N-l)50,73,9

Transfer to:
ml
m2
m3

Expression Value

IF (AMTX(2,1,2»7,2,l

15
o

-256

Transfer to

5
73

7

FORTRAN-SO Reference Manual Page 50

7.3.2 LOGICAL IF

The Logical IF statement is of the form:

IF (u)s

where u is a Logical expression and s is any
executable statement except a DO statement (see
7.4) or another Logical IF statement. The Logical
expression u is evaluated as • TRUE. or .FALSE.
Section 4 contains a discussion of Logical
expressions.

Control Conditions:

If u is FALSE, the statement s is ignored and
control goes to the next statement following the
Logical IF statement. If, however, the expression
is TRUE, then control goes to the statement s, and

·~:subsequent program control follows normal
conditions.

If s is a replacement statement (v = e, Section 5) ,
the -variable and equality sign (=)must be on the
same line, ei,ther immediately following IF (u) or on
a separate continuation line with the line spaces
following IF(u) left blank. See example 4 below.

Examples:

1. IF(I.GT.20) GO TO 115

2. IF(Q.AND.R) ASSIGN 10 TO J

3. IF(Z) CALL DECL(A,B,C)

4. IF(A.OR.B.LE.PI/2)I=J

5. IF(A.OR.B.LE.PI/2)
X I =J

FORTRAN-80Reference Manual Page 51

7.4 DO STATEMENT

The DO statement, as implemented in FORTRAN,
provides a method for repetitively executing a
series of statements. The statement takes of one
of the two following forms:

1) DO k i = ml,m2,m3

or

2) DO k i = ml,m2

where k is a statement label, i is an integer or
logical variable, and ml, m2 and m3 are integer
constants or integer or logical variables.

If m3 is 1, it may be omitted as in 2) above.

The following conditions and restrictions govern
the use of DO statements:

1. The DO and the first comma must appear on the
initial line.

2. The statement labeled k, called the terminal
statement, must be an executable statement.

3. The terminal statement must physically follow
its associated DO, and the executable
statements following the DO, up to and
including the terminal statement, constitute
the range of the DO statement.

4. The terminal statement may not be an Arithmetic
IF, GO TO, RETURN, STOP, PAUSE or another DO.

5. If the terminal statement is a logical IF and
its expression is .FALSE., then the statements
in the DO range are reiterated.

If the expression is .TRUE., the statement of
the logical IF is executed and then the
statements in the DO range are reiterated. The
statement of the logical IF may not be a GO TO,
Arithmetic IF, RETURN, STOP or PAUSE.

6. The controlling integer variable, i, is called
the index of the DO range. The index must be
positive and may not be modified by. any
statement in the range.

7. If ml, m2, and m3 are Integer*l variables or
constants, the DO loop will execute faster and
be shorter, but the range is limi ted' to 127

FORTRAN-SO Reference Manual Page 52

iterations. For example, the loop overhead for
a DO loop with a constant limit and an
increment of 1 depends upon the type of the
index variable as follows:

Index Variable
Type

INTEGER*2
INTEGER*l

Overhead
Microseconds . Bytes

35.5
24

~9
14

S. During the first execution of the statements in
the DO range, i is equal to ml; the second
execution, i = ml+m3; the third, i=ml+2*m3,
etc., until i is equal to the highest value in
this sequence less than. or equal to m2, and
then the DO is said to be satisfied. The
statements in the DO range will always be
executed at least once, even if ml < m2.

When the DO has been
to the statement
statement, otherwise
the first executable
statement.

Example:

satisfied, control passes
following the terminal

control transfers back to
statement following the DO

The following example computes

100
Sigma Ai where a is a one-dimensional array
i=l

100 DIMENSION A(lOO)

SUM = A(l)
DO 31 I = 2,100

31 SUM =SUM + A(I)

END

FORTRAN-80 Reference Manual Page 53

9. The range of a DO statement may be extended to
include all statements which may logically be
executed between the DO and its terminal
statement. Thus, parts of the DO range may be
situated such that they are not physically
between the DO statement and its terminal
statement but are executed logically in the DO
range. This is called the extended range.

Example:

DIMENSION A(500), B(500)

DO 50 I = 10, 327, 3

IF (V7 -C*C) 20,15,31
30

50 A(I) = B(I) + C

20 C = C - .05
GO TO 50

31C=C+ .0125
GO TO 30

10. It is invalid to transfer control into the
range of a DO statement not itself in the range
or extended range of the same DO statement.

11. Within the range of a DO statement, there may
be other DO statements, in which case the DO's
must be nested •. That is, if the range of one
DO contains another DO, then the range of the
inner DO must be entirely included in the range
of the outer DO.

The terminal statement of the inner DO may also
be the terminal statement of the outer DO.

FORTRAN-BO Reference Manual

For example, given a two dimensional
15 rows and 15 columns, and a
one-dimensional array B, the
statements compute the 15 elements
to the formula:

Page 54

array A of
15 element

following
of array C

15
Ck =Sigma

j=l
AkjBm, k = 1,2, ••• ,15

DIMENSION A(15,15), B(lS), C(15)

DO 80 K =1,15
C(K) = 0.0
DO 80 J=l,lS

80 C(K) = C(K) +A(K,J) * B(J)

7.5 CONTINUE STATEMENT

CONTINUE is classified as an executable statement.
However, its execution does nothing. The form of
the CONTINUE statement is as follows:

CONTINUE

the terminal
range when the

be the terminal
are not allowed or

CONTINUE is frequently used as
statement in a -DO statement
statement which would normally
statement is one of those which
is only executed conditionally.

Example:

DO 5 K = 1,10

IF (C2) 5,6,6
6 CONTINUE

C2 = C2 +.005
5 CONTINUE

FORTRAN-SO Reference Manual Page 55

7.6 STOP STATEMENT

A STOP statement has one of the following forms:

STOP

or

STOP c

where c is any string of one to six characters.

When STOP is encountered during execution of the
object program, the characters c (if present) are
displayed on the operator control console and
execution of the program terminates.

The STOP statement, therefore, constitutes the
logical end of the program.

7.7 PAUSE STATEMENT

A PAUSE statement has one of the following forms:

PAUSE

or

PAUSE c

where c is any string of up to six characters.

When PAUSE is encountered during execution of the
object program, the. characters c (if present) are
displayed on the operator control console and
execution of the program ceases.

The decision to continue execution of the program
is not under control of the program. If execution
is resumed through intervention of an operator
without otherwise changing the state of the
processor, the normal execution sequence, following
PAUSE, is continued.

Execution may be terminated by typing a "T" at the
operator console. Typing any other character will
cause execution to resume.

FORTRAN-80 Reference Manual Page 56

7.8 CALL STATEMENT

CALL statements control transfers into
subprograms and provide parameters for
subprograms. The general forms and
discussion of CALL statements appear in
FUNCTIONS AND SUBPROGRAMS.

SUBROUTINE
use by the

detailed
Section 9,

7.9 RETURN STATEMENT

7.10

The form, use and interpretation of the RETURN
statement is described in Section 9;

END STATEMENT

The END statement
statement of any
following form:

END

must physically
FORTRAN program.

be the last
It has the

The END statement is an executable statement and
may have a statement label. It causes a transfer
of control to be made to the system exit routine
$EX, which returns control to the operating system.

FORTRAN-ao Reference Manual

SECTION a

INPUT / OUTPUT

PageS7

FORTRAN provides a series of statements which define the
control and conditions of data transmission between computer
memory and external data handling or mass storage devices
such as magnetic tape, disk, line printer, punched card
processors, keyboard printers, etc.

These statements are grouped as follows:

1. Formatted READ and WRITE statements which cause
formatted information.to be transmitted between the
computer and I/O devices.

2. Unformatted READ and WRITE statements which
transmit unformatted binary data in a form similar
to internal storage.

3. Auxiliary I/O statements for
demarcation of files.

positioning and

4e ENCODE and DECODE statements for transferring data
between memory locations.

5. FORMAT statements used in conjunction ~ith
formatted .. record transmission to provide data
conversion and editing information between internal
data representation and external character string
forms.

FORTRAN-80 Reference Manual Page 58

8.1

8.1.1

FORMATTED READ/WRITE STATEMENTS

FORMATTED READ STATEMENTS

A formatted READ statement is used to transfer
information from an input device to the computer.

Two forms of the statement are available, as
follows:

READ (u,f,ERR=L1,END=L2) k

or

READ (u,f,ERR=L1,END=L2)

where:

u - specifies a Physical and Logical unit Number
and may be either an unsigned integer or an
integer variable in the range 1 through 10. If
an Integer variable is used, an Integer value
must be assigned to it prior to execution of

. the READ statement.

Units 1, 3, 4, and 5 are preassigned to the
console Teletypewriter. Unit 2 is preassigned
to the Line Printer (if one exists). Units
6-10 are preassigned to Disk Files (see User's
Manual, Section 3). These units, as well as
units 11-255, may be re-assigned by the user
(see,Appendix B).

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used within the input transmission or it may be
an array name, in which case the formatting
information may be input to the program at the
execution time. (See Section 8. 7.10)

Ll- is the FORTRAN label on the statement to which
the I/O processor will transfer control if an
I/O error is encountered.

L2- is the FORTRAN label on the statement to which
the I/O processor will transfer control if an
End-of-File is encountered.

k - is a list of variable names, separated by com
mas, specifying the input data.

FORTRAN-80 Reference Manual Page 59

READ (u,f)k is used to input a number of items,
corresponding to the names in the list k, from the
file on logical unit u, and using the FORMAT
statement f to specify the external representation
of these items (see FORMAT statements, 8.7). The
ERR= and END= clauses are optional. If not
specified, I/O errors and End-of-Files cause fatal
runtime errors.

The following notes further define the function of
the READ (u,f)k statement:

1. Each time
begins, a
read.

execution
new record

of the READ statement
from the input file is

2. The number of records to be input by a single
READ statement is determined by the list, k,
and format specifications.

3. The list k specifies the number of items to be
read from the input file and the locations into
which they are to be stored.

4. Any number of items may appear in a single list
and the items may be of different data types.

s. If there are more quantities in an input record
than there are items in the list, only the
number of quantities equal. to the number of
items in the list are transmitted. Remaining
quanti~ies are ignored.

6. Exact specifications for the list
described in 8.6.

Examples:

k are

l~ . Assume that four Integer data entries are
stored in a sequential disk file and that the
values have field widths of 3, 4, 2 and 5
respectively. The statements

READ(5,20)K,L,M,N
20 FORMAT(I3,I4,I2,IS)

will read the file and assign the input data to
the variables K, L, M and N.

See 8.7 for complete description of FORMAT
statements.

FORTRAN-80 Reference Manual Page 60

2. Input the quantities of an array (ARRY):

READ(6,21)ARRY

Only the name of the array needs to appear in
the list (see 8.6). All elements of the array
ARRY will be read and stored using the
appropriate formatting specified by the FORMAT
statement labeled 21.

READ(u,k) may be ~sed in conjunction with a FORMAT
statement to read H-type alphanumeric data into an
existing H-type field (see Hollerith Conversions,
8.7.3).

For example, the statements

READ(I,25)

25 FORMAT (IOHABCDEFGHIJ)

cause the next In characters of the file on input
device I to be read and replace the characters
ABCDEFGHIJ in the FORMAT statement.

FORTRAN-80 Reference Manual Page 61

8.1.2 FORMATTED WRITE STATEMENTS

A formatted WRITE s.tatement is used to transfer
information from the computer to an output device.

Two forms of the statement are available, as
follows:

WRITE(u,f,ERR=Ll,END=L2)k

or

WRITE (u,f,ERR=Ll,END=L2)

where:

u - specifies a Logical Unit Number.

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used with the output transmission.

Ll- specifies an I/O error branch.

L2- specifies an EOF branch.

k - is a list of variable names separated by com
mas, specifying the output data.

WRITE ·{u,f)kisused to output the data specified
in the list k to a file on logical unit u using the
FORMAT statement f to specify the external
representation of the data (see FORMAT statements,
8.7). The following notes further define the
function of the WRITE statement:

1. Several records may be output with a single
WRITE statement, with the number determined by
the list and FO~T specifications.

2. Successive data are output until the data
specified in the list are exhausted.

3. If output is to a device which specifies fixed
length records and the data specified in the
list do not fill the record, the remainder of
the record is filled with blanks.

Example:

WRITE(2,lO)A,B,C,D

The data assigned to the variables A, B,· C and D
are output to Logical Unit Number 2, formatted
acco.r.ding to the FORMAT statement labeled 10.

FORTRAN-80 Reference Manual Page 62

WRITE(u,f) may be used to write alphanumeric
information when the characters to be written are
specified within the FORMAT statement. In this
case a variable list is not required.

For example, to write the characters 'H CONVERSION'
on unit 1,

WRITE(1,26)

26 FORMAT ('H CONVERSION')

8.2 UNFORMATTED READ/WRITE

Unformatted I/O (i.e. without data conversion) is
accomplished using the statements:

READ (u,ERR=Ll,END=L2) k

WRITE (u , ERR=Ll, END=L2)· k

where:

u - specifies a Logical Unit Number.

Ll- specifies an I/O error branch.

L2- specifies an EOF branch.

k - is a list of variable names,.separated by
commas, specifying the I/O data.

The following notes define the functions of
unformatted I/O statements.

1. Unformatted READ/WRITE statements perform
memory-image transmission of data with no data
conversion or editing.

2. The amount of data transmitted corresponds to
the number of variables in the list k.

3. The total length of the list of variable names
in an unformatted READ must not be longer than
the record length. If the logical record
length and the length of the list are the same,
·the entire record is read. If the length of
the list is shorter than the logical record
length the unread items in the record are
skipped.

FORTRAN-80 Reference Manual

4. The WRITE(a)k statement writes one logical
record.

5. A ·logical record may extend across more than
one physical record.

8.3 DISK FILE I/O

8.3.1

A READ or WRITE to a disk file (LUN 6-10)
automatically OPENs the file for I/O. The file
remains open until closed by an ENDFILE command
(see Section 8.4) or until normal program
termination.

NOTE

Exercise caution when doing sequential
output to disk files. If output is done to
an existing file, the existing file will be
deleted and replaced with a new file of the
same name.

RANDOM DISK I/O

. SEE ALSO. SECTION 3·0F YOUR MICROSOFT FORTRAN USER'S
MANUAL.

For random disk access, the record number is
specified by using the REC=n option in the READ or
WRITE statement. For example:

I = 10
WRITE (6,20,REC=I,ERR=50) X, Y, Z

This program segment writes record 10 on LUN 6. If
a previous record 10 exists, it is written over.
If no record 10 exists, the file is extended to
create one. Any attempt to read a non-existent
record results in an I/O error.

FORTRAN-80 Reference Manual Page 64

8.3.2 OPEN SUBROUTINE

Alt,ernatively, a file may be OPENed using the OPEN
subroutine. LUNs 1-5 may also be assigned to disk
files with OPEN. The OPEN subroutine allows the
program to specify a filename and device to be
associated with a LUN.

An OPEN of a non-existent file creates a null file
of the appropriate name. An OPEN of an existing
file followed by sequential output deletes the
existing file. An OPEN of an existing file
followed by an input allows access to the current
contents of the file.

The form of an OPEN call
·operating systems. See
User's Manual, Section 3.

8.4 AUXILIARY I/O STATEMENTS

varies under different
your Microsoft FORTRAN

Three auxiliary I/O statements are provided:

BACKSPACE u,
REWIND u
ENDFILE u

The actioris of all three statements depend on the
LUN with which they are used (see Appendix B).
When the LUNis for a terminal or line printer, the
three statements are defined as no-op~.

When the LUN is for a disk drive, the ENDFILE and
REWIND commands allow further program control of
disk files. ENDFILE u closes the file associated
with LON u. REWIND u closes the file associated
with LUN u, then opens it again. BACKSPACE is not
implemented at this time, and therefore causes an
error if used.

FORTRAN-80 Reference Manual Page 65

8.5 ENCODE/DECODE

ENCODE and DECODE statements transfer data,
according to format specifications, from one
section of memory to another. DECODE changes data
from ASCII format to the specified format. ENCODE
changes data of the specified format into ASCII
format. The two statements are of the form:

where:

ENCODE(a,f) k
DECODE(a,f) k

a is an array name
f is FORMAT statement number
k is an I/O List

DECODE·is analogous to a READ statement, since it
causes conversion from ASCII to internal format.
ENCODE is analogous to a WRITE statement, causing
conversion from internal formats to ASCII.

NOTE

Care should be taken that the array A is
always large enough to contain all of the
data being proces·sed. There is no check
:£Q-I-GV~OW. An . ENCODE oper-ationwhich
overflows the array will probably wipe out
important data following the array. A
DECODE operation which overflows will
attempt to process the data following the
array.

8.6 INPUT/OUTPUT LIST SPECIFICATIONS

Most forms of READ/WRITE statements may contain an
ordered list of data names which identify. the data
to be transmitted. The order in which the list
items appear must be the same as that in which the
corresponding data exists (Input), or will exist
(Output) in the external I/O medium.

Lists have the following form:

ml ,m2, ••• ,mn

where the mi are list items separated by commas, as
shown.

FORTRAN-SO Reference Manual Page 66

S.6.1 LIST ITEM TYPES

A list item may be a single datum identifier or a
multiple data identifier.

1. A single datum identifier item is the name of a
variable or array ele~ent.

Examples:

A
C(26,1) ,R,K,D
B,I(lO,lO) ,S,F(l,25)

NOTE

Sublists are not implemented.

2. Mul tiple data identifier i terns are in _two
forms:

a. An array name appearing-in a list without
subscript(s) is considered equivalent to the
listing of each successive element of the
array.

Example:

If B is a two dimensional array, the list item
B is equ i valen t to: B (1 , l) , B (2 , l) , B (3 , l) ••.• ,
B(1,2) ,B(2,2) ••• ,B(j ,k).

where j and k are the subscript limits of B.

b. DO-implied items are lists of one or more
single datum identifiers or other DO-implied
items followed by a comma character and an
expression of the form:

i = ml,m2,m3 or i = ml,m2

and enclosed in parentheses.

The elements i,ml,m2,m3 have the same
as defined for the DO statement.
implication applies to all list items
in parentheses with the implication.

meaning
The DO

enclosed

FORTRAN-BO Reference Manual Page 67

B.6.2

Examples:

DO-Implied Lists

(X(I) ,I=l,4)
(Q (J) , R (J) , J=l , 2)
(G(K) ,K=l,7,3)
«A'(I,J) ,I=3,S) ,J=1,9,4)

(R(M) ,M=1,2) ,I, ZAP(3)
(R(3) ,T(l) ,I=1,3)

Equivalent Lists

X(l) ,X (2) ,X (3) ,X (4)
Q(l) ,R(l) ,Q(2) ,R(2)
G (I) , G (4) , G ,(7)
A(3,1) ,A(4,1) ,A(S,l)
A(3,S) ,A(4,S) ,A(S,S)
A(3,9) ,A(4,9) ,A(S,9)
R (I) , R (2) l I , ZAP (3)
R(3) ,T(l) ,R(3) ,T(2) ,
R(3) ,T(3)

Thus, the elements of a matrix, for example,
may be transmitted in an order different from
the order in which they appear in storage. The
array A(3,3) occupies storage 1n the order
A(I,l) ,A(2,1), A(3,1) ,A(I,2) ,A(2,2) ,A(3,2),
A (1 , 3) , A (2 , 3) , A (3 , 3) • By spec i fy i ng th e
transmission of the array with the DO-implied
list. item «A(l,J) ,J=1,3) ,I=I,3), the order of
transmission is:
A(l,l) ,A(I,2) ,A(I,3) ,A(2,1) ,A(2,2),
A(2,3) ,A(3,1) ,A(3,2) ,A(3,3)

SPECIAL NOTES ON LIST SPECIFICATIONS -- ---- ---~~~--~~
1. The ordering of a list is from 'left to right

with repetition of items enclosed in
parentheses (other than as subscripts) ,when
accompanied by controlling DO-implied index
parameters.

2. Arrays are transmitted by the appearance of the
array name (unsubscripted) in an input/output
list.

3. Constants may appear in an input/output list
only as subscripts or as indexing parameters.

4. For input lists, the DO-implying elements i,
ml, m2 and m3 may not appear within the
parentheses as list items.

Examples:

1. READ ('1,20) (I,J,A(l) ,I=I,J,2) is not allowed

2 • READ (1 , 2 0) I , J , (A (I) , I = 1 , J , 2) is allowed

FORTRAN-80 Reference Manual Page 68

3. WRITE(1,20) (I,J,A(I) ,I=1,J,2) is allowed

Consider the following examples:

DIMENSION A(2S)

A(l) = 2.1
A(3) = 2.2
A(S) = 2.3
J = S

WRITE (1,20) J, (I,A(I) ,I=1,J,2)

the output of this WRITE statement is

S,1,2.l,3,2.2,S,2.3

1. Any number of items may appea~ in a single
list.

2.· In a formatted transmission (READ(u,f)k,
WRITE(u,f)k) each item must have the correct
type as specified by .. a FORMAT statement.

8.7 FORMAT STATEMENTS

FORMAT statements .. are non-executable, generative
statements used .in· conjunction with formatted READ
and WRITE statements. They specify conversion
methods and data editing.information ·as the data is
transmitted between computer storage and external
media representation.

FORMAT statements
reference (f) in
statements.

require statement labels for
the READ(u,f)k or WRITE(u,f)k

The general form of a FORMAT statement is as
follows:

m FORMAT (sl,s2, ••• ,sn/sl',s2', ••• ,sn'I •.•)

where m is the statement label and each si is a
field descriptor. The word FORMAT and the
parentheses must be present as shown.. The slash
(I) and comma (,) characters are field separators
and are described in a separate subparagraph. The
field is defined as that part of an external record
occupied by one transmitted item.

FORTRAN-SO Reference 'Manual "Page69

8.7.1 FIELD DESCRIPTORS

Field descriptors describe the sizes of data fields
and specify the type of conversioh to be exercised
upon each transmitted datum. The FORMAT field
descriptors may have any of the following forms:

Descriptor

rFw.d
rGw.d
rEw.d
rDw.d
rIw

rLw

rAw
nHhlh2 ••• hn
'1112 ••• ln'

nX
mP

where:

Classificati'on

Numeric Conversion

Logical Conversion

Hollerith Conversion

Spacing Specification
Scaling Factor

1. wand n are positive integer constants defining
the field width (including digits, decimal
points, algebraic signs) in the external data
r-epr-e-se'ntati-on.

2. d is an integer specifying the number of
fractional digits appear1ng in the external
data representation.

3. The characters F, G, E, 0, I, A and L indicate
the type of conversion to be applied to the
items in an input/output list.

4. r is an optional, non-zero integer indicating
that the descriptor will be repeated r times.

5. The hi and li are characters from the FORTRAN
character set.

6. m is an integer constant (positive, negative,
or zero) indicating ,scaling.

FORTRAN-80 Reference Manual Page 70

8.7.2 NUMERIC CONVERSIONS

Input operations with any of the numeric
conversions will allow the data to be represented
in a "Free Format": i.e., commas may be used to
separate the fields in the external representation.

F-type conversion

Form: Fw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

F-output

Values are ~onverted and output as minus sign (if
negative), followed by the integer portion of the
number, a decimal point and d~ digits of the
fractional portion of the number. If a value does
not fill the field, it is right justified in the
field and enough preceding blanks to fill the field
are inserted. If a· value requires more field
positions than allowed by w,' the first w-l digits
of the value are output, preceded by an asterisk.

F-Output Examples:

FORMAT
Descriptor

FlO.4
F7.l
F8.4
F6.4
F7.3

Internal
Value

368.42
-4786.361
8.7E-2
4739.76
-5.6

Output
(b=blank)

bb368.4200
-4786.4
bbO.0870

*.7600
b-5.600

* Note the loss of leading digits in the 4th line
above.

F-Input

(See the description under E-Input below.)

E-type Conversion

Form: Ew.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

FORTRAN-80 Reference Manual Page 71

E-Output

Values are converted, rounded to d digits, and
out~ut as:

1. a minus sign (if negative) ,

2. a zero and a decimal point,

3. d decimal digits,

4. the letter E,

5. the sign of the exponent (minus or blank),

6. two exponent digits,

in that order. The values as described are right
justified in the field w with preceding blanks to
fill the field if necessary. The field width w
should satisfy the relationship:

w > d + 7

Otherwise significant characters may be lost. Some
E-Output examples follow:

FORMAT
Descriptor

E12.5
E14.7
E13.4
ES.2

E-.Input

Internal
Value

76.573
-32672.354
-0.0012321
76321.73

Output
(b=blank)

bb.76573Eb02
-b.3267235Eb05
bb-b.1232E-02
b.76Eb05

Data values which are to be processed under E, F,
or G conversion can be a relatively loose format in
the external input medium. The format is identical
for either conversion and is as follows:

1. Leading spaces (ignored)

2. A + or - sign (an unsigned input is assumed to
be positive)

3. A string of ~igits

4. A decimal point

5. A second string of digits

FORTRAN-80 Reference Manual

6. The character E

7. A + or - sign

8. A decimal exponent

Each item in the list above is optional;
following conditions must be observed:

Page 72

but the

1. If FORMAT items 3 and 5 (above) are present,
then 4 is required.

2. If FORMAT item 8 is present, then 6 or 7 or
both are required.

3. All non-leading spaces are considered zeros.

Input data can be any number of digits in length,
and correct magnitudes will be developed, but
precision will be maintained only to the extent
specified in Section 3 for Real data.

E- and F- and G- Input Examples:

FORMAT Input Internal
Descriptor (b=blank) Value

EIO.3 +0.23756+4 +2375.60
EIO.3 bbbbb17631 +17.631
G8.3 b1628911 +1628.911
F12.4 bbbb-6321132 -632.1132

Note in the above examples that if no decimal point
is given among the input characters, the d in the
FORMAT specification establishes the decimal point
in conjunction with an exponent, if given. If a
decimal point is included in the input characters,
the d specification is ignored.

The letters E, F, and G are interchangeable in the
input format specifications. The end result is the
same.

D-Type Conversions

D-Input and D-Output are identical to E-Input and
E-Output except the exponent may be specified with
a "D" instead of an "E."

FORTRAN-80 Reference Manual Page 73

G-Type Conversions

Form: Gw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered significant.

G-Input:

(See the description under E-Input)

G-Output:

The method of output conversion is a function of
the magnitude of the number being output. Let n be
the magnitude of the number. The following table
shows how the number will be output:

Magnitude

.1 <= n < 1

1 <= n < 10

d-2
10

d-l
10

d-l
<:=n~ 10

d
<= n < 10

Otherwise

j-:Conversions

Form: Iw

Equivalent Conversion

F(w-4) .d,4X

F(w-4) • (d-l) ,4X

F(w 4).1,4X

F(w-4) .0,4X

Ew.d

Only Integer data may be converted by this form of
conversion. w specifies field width.

I-Output:

Values are converted to Integer constants.
Negative values are preceded by a minus sign. If
the value does not fill the field, it is right
justified in the field and enough preceding blanks
to fill the field are inserted. If the value
exceeds the field width, only the least significant
w-l characters are output preceded by an asterisk.

FORTRAN-80 Reference Manual Page 74

8.7.3

Examples:

FORMAT
Descriptor

I6
I6
I3
I4

I-Input:

Internal
Value

+281
-23261
126
-226

Output
(b=blank)

bbb281
-23261

126
-226

A field of w characters is input and converted to
internal integer format. A minus sign may precede
the integer digits. If a sign is not'present, the
value is considered positive.

Integer values in the range -32768 to 32767 are
accepted. Non-leading spaces are treated as zeros.

Examples:

Format
Descriptor

I4
I4
I7
I4

Input
(b=blank)

b124
-124
bb6732b
lb2b

HOLLERITH CONVERSIONS

A-Type Conversion

Internal
Value

124
-124
67320
1020

The form of the A conversion is as follows:

Aw

This descriptor causes unmodified Hollerith
characters to be read into or written from a
specified list item.

The maximum number of, actual characters which may
be transmitted between internal and external
representations using Aw is four times the number
of storage units in the corresponding list item
(i.e., 1 character for logical items, 2 characters
for Integer items, 4 characters for Real items and
8 characters for Double Precision items).

A-Output:

If w is greater than 4n (where n is the
storage units required by the list

number of
item), the

FORTRAN-SO Reference Manual Page 75

external output field will consist of w-4n blanks
followed by the 4n characters from the internal
representation. If w is less than 4n, the external
output field will consist of the leftmost w
characters from the internal representation.

ExamEles:

Format Internal Type Output
Descriptor (b=blanks)

Al Al Integer A
A2 AB Integer AB
A3 ABCD Real ABC
A4 ABCD Real ABCD
A7 ABCD. Real bbbABCD

A-Input:

If w is greater than 4n (where n is the number of
storage units required by the corresponding list
item), the rightmost 4n characters are taken from
the external input field. If w is less than 4n,
the w characters appear left justified with w-4n
trailing blanks in the internal representation.

ExamEles:

Format
Descriptor

Al
A3
A4
Al
A7

H-Conversion

Input
Characters

A
ABC
ABCD
A
ABCDEFG

Type

Integer
Integer
Integer
Real
Real

The forms of H conversion are as follows:

nHhlh2 ••• hn

'hlh2 .•• hn'

Internal
(b=blank)

Ab
AB
AB
Abbb
DEFG

These descriptors process Hollerith character
strings between the descriptor and the external
field, where each hi represents any character from
the ASCII character set.

FORTRAN-80 Reference Manual Page 76

8.7.4

NOTE.

Special consideration is required if an
apostrophe (') is to be used within the
literal string in the second form. An
apostrophe character within the string is
represented by two successive apostrophes.
See the examples below.

H-Output:

The n characters hi, are placed in the external
field. In the nHhlh2 ••• hn form the number of
characters in the string must be exactly as
specified by n. Otherwise, characters from other
descriptors will be taken as part of the string •

. In both forms, blanks ar ecourt ted as cha.r acter s.

Examples:

Format
De scr iptor .

lHA or 'A'
8HbSTRINGb or 'bSTRINGb'
llHX(2,3)=12.0 or 'X(2,3)=l2.0'
llHIbSHOULDN 'T or 'IbSHOULDN" T '

H-Input

Output
(b=blank)

A
bSTRINGb
X(2,3)=12.0
IbSHOULDN'T

The n characters of the string hi are replaced by
the next n characters from the input record. This
results in a new string of characters in the field
descriptor.

FORMAT Input Resultant
Descriptor (b=blank) Descriptor

4H1234 or '1234' ABCD 4HABCD or 'ABCD'
7 HbbFALSE or 'bbFALSE' bFALSEb 1HbFALSEb or 'bFALSEb'
6Hbbbbbb or 'bbbbbb' MATRIX 6HMATRIX or 'MATRIX'

LOGICAL CONVERSIONS .

The form of the logical conversion is as follows:

Lw

L-Output:

If the value of an item in an output list

FORTRAN-80 Reference Manual Page 77

8.7.5

corresponding to this descriptor is 0, an F will be
output; otherwise, a T will be output. If w is
greater than 1, w-l leading blanks precede the
letters.

Examples:

FORMAT
Descriptor

Ll
Ll
L5
L7

L-Input

Internal
Value

=0
<>0
<>0
=0

Output
(b=blank)

F
T
bbbbT
bbbbbbF

The external representation occupies w positions.
It consists of optional blanks followed by a "T" or
"F.~·,£ollowed by optional character;~s.

X DESCRIPTOR

The form of X conversion is as follows:

nX

This descriptor causes no conversion.to occur, nor
_.do.es it. cO.rra5P.Qnd to an itJ~minan inp\ltLQ~tput
list. When used. for output, it causes n blanks to
be inserted in the output record. Under input
circumstances, this descriptor causes the next n
characters of the input record to be skipped. Note
that IX is required., as X alone will not work.

Output Examples:

FORMAT Statement

3 FORMAT (lHA,4X,2HBC)
7 FORMAT (3X,4HABCD,lX)

Input Examples:

FORMAT Statement

Output
(b=blank)

AbbbbBC
bbbABCDb

Input String Resultant Input

10 FORMAT (F4.l,3X,F3cO) l2.5ABC120 12.5,120
012 5 FORMAT (7X,I3) 1234567012

FORTRAN-80 Reference Manual Page 78

8.7.6 P DESCRIPTOR

The P descriptor is used to specify a scaling
factor for real conversions (F, E, D, G). The form
is nP where n is an integer constant (positive,
negative, or zero).

The scaling factor is automatically set to zero at
the beginning 'of each formatted I/O call (each READ
or WRITE statement). If a P descriptor is
encountered while scanning a FORMAT, the scale
factor is changed to n. The scale factor remains
changed until another P descriptor is encountered
or the I/O terminates.

Effects of Scale Factor on Input:

During E, F, or G input the scale factor takes
effect only if no exponent is present in the
external representation. In that case, the·
internal value will be a factor of lO**n less than
the external value (the number will be divided' by
lO**n before being stored).

Effect of Scale Factor on Output:

E-Output; D-Output:

The coefficient 'is shifted left n places relative
to the decimal point, and the exponent is reduced
by n (the value remains the same).

F-Output:

The external value will be lO**n times the internal
value.

G-Output:

The scale factor is ignored if the internal value
is small enough to be output using F conversion.
Otherwise, the effect is the same as for E output.

FORTRAN-SO Reference Manual Page 79

8.7.7 SPECIAL CONTROL FEATURES OF FORMAT STATEMENTS

8.7.7.1 Repeat Specifications

1. The E, F, 0, G, I, L and A field descriptors
may be indicated as repetitive descriptors by
using a repeat count r in the form rEw.d,
rFw.d, rGw.d, rlw, rLw, rAw. The following
pairs of FORMAT statements are equivalent:

66 FORMAT (3FS.3,F9.2)
C IS EQUIVALENT TO:

66 FORMAT (FS.3,F8.3,FS.3,F9.2)

14 FORMAT (2I3,2AS,2ElO.S)
C IS EQUIVALENT TO:

14 FORMAT (I3,I3,AS,A5,ElO.S,ElO.S)

2. Repetition of a group of field descriptors is
accomplished by enclosing the group in
parentheses preceded by a repeat count.
Absence of a repeat count indicates a count of
one. Up to two levels of parentheses,
including the parentheses required by the
FORMAT statement, are permitted.

Note the following equivalent statements:

22 FORMAT (I3,4(F6.1,2X»
C IS EQUIVALENT TO:

22 FORMAT (I3,F6.1,2X,F6.l,2X,F6.1,2X,
I F6.1,2X)

3. Repetition of FORMAT descriptors is also
init~ated when all descriptors in the FORMAT
statement have been used but there are still
items in the input/output list that have not
been processed. When this occurs the FORMAT
descriptors are re-used starting at the first
opening parenthesis in the FORMAT statement. A
repeat count preceding the parenthesized
descriptor(s) to be re-used is also active in
the re-use. This type of repetitive use of
FORMAT descriptors terminates processing of the
current record and initiates the processing of
a new record each time the re-use begins.
Record demarcation under these circumstances is
the same as in the paragraph S.7.7.2 below.

FORTRAN-BO Reference Manual

Input Example:

DIMENSION A(100)
READ (3,13) A

13 FORMAT (SF7.3)

Page 80

In this example, the first 5 quantities from each
of 20 records are input and assigned to the array
elements of the array A.

Output Example:

WRITE {6,12)E,F,K,L,M,KK,LL,MM,K3,L3,M3

12 FORMAT (2F9.4,3{3I7,/»

In this example, three records are written. Record
1 contains E, F; K, Land M. Because the
descriptor 3I7 is reused twice, Record 2 contains
KK, LL and MM and Record 3 contains K3, L3 and M3.

8.7.7.2 Field Separators

Two adjacent descriptors must be separated in the
FORMAT statement by either a comma or one or more

'slashes.

Example:

2HOK/F6.3 or 2HOK,F6.3

The slash not only separates field descriptors, but
it also specifies the demarcation of formatted
records.

Each slash terminates· a record and sets up the next
record for processing. The remainder of an input
record is ignored; the remainder of an output
record is filled with blanks. Successive slashes
(111 ... /) cause successive records to be ignored on
input and successive blank records to be written on
output.

FORTRAN-80Reference Manual Page 81

8.7.8

Output example: .
DIMENSION A(lOO) ,J(20)

WRITE (7,8) J,A
8 FORMAT (lOI7/l0I7/S0F7.3/S0F7.3)

In this example, the data specified by the list of
the WRITE statement are output to unit 7 according
to the specifications of FO~T statement 8. Four
records are written as follows:

Record 1 Record 2 Record 3 Record 4

J(l) J(ll) A(l) A(Sl)
J (2) J (12) A(2) A(S2)

. .
J(lO) J(20) A(SO) A(lOO)

Input Example:

DIMENSION B (10)

READ (4,17) B
17 FORMAT (FIO~ 2/FlO .2///8-FIO. 2)

In this example,- the two array elements B(l) and
B(2) receive their values from the first data
fields of successive records (the remainders of the
two records are ignored). The third and fourth
records are ignored and the remaining elements of
the array are filled from the fifth record.

FORMAT CONTROL, LIST SPECIFICATIONS AND RECORD
DEMARCATION

The following rel~tionships and interactions
between FORMAT control, input/output lists and
record demarcation should be noted:

1. Execution of a formatted READ or
statement initiates FORMAT control.

WRITE

2. The conversion performed on data depends on
information jointly provided by the elements in
the input/output list and field descriptors in
the FORMAT statement.

FORTRAN-80 Reference Manual Page 82

3. If there is an input/output list, at least one
descriptor of types E, F, D, G, I, L or A·must
be present in the FORMAT statement.

4. Each execution of a formatted READ statement
causes a new record to be input.

5. Each item in an input list corresponds to a
string of characters in the record and to a
descriptor of the types E, F, G, I, L or A in
the FORMAT statement.

6. H and X descriptors communicate information
directly between the external record and the
field descriptors without reference to list
items.

7. On input, whenever a slash is encountered in
~he FORMAT statement or the FORMAT descriptors
have been exhausted and re-use~ of descriptors
is initiated, processing of the current record
is terminated and the following occurs:

a. Any. unprocessed characters in the record
are ignored.

b. If more input is necessary to satisfy
list requirements, the next record is
read.

8. A READ statement is terminated when all items
in the input list have been satisfied if:

a. The next FORMAT descriptor is E, F, G, I;
L or A.

b. The FORMAT control has reached the last
outer right parenthesis of the FORMAT
statement.

If the input list has been satisfied, but the
next FORMAT descriptor is H or X, more data are
processed (with the possibility of new records
being input) until one of the above conditions
exists.

9. If FORMAT control reaches the last right
parenthesis of the FORMAT statement but there
are more list items to be processed, all or
part of the descriptors are reused. (See item
3 in the description of Repeat Specifications,
sub-paragraph 8.7.7.1)

FORTRAN-80 Reference Manual Page 83

8.7.9

8.7.10

10. When a Formatted WRITE statement is executed,
records are written each time a slash is
encountered in the FORMAT statement or FORMAT
control has reached the rightmost right
parenthesis. The FORMAT control terminates in
one of the two methods described for READ
termination in 8 above. Incomplete records are
filled with blanks to maintain record lengths.

FORMAT CARRIAGE CONTROL

Formatted I/O to ~ console or printer uses the
first character of each record for carriage
control. The carriage control character is never
printed. The carriage control character determines
what action will be taken before the line is
printed. The options are as follows:

Control Character

o
1
+
Other

Action Taken Before Printing

Skip 2 lines
Insert Form Feed
No advance
Skip 1 line

Formatted I/O to disk does not require the first
character of each record to be a carriage control
character. Records are terminated by a carriage
return character (X'OD'). There are no line-feeds
(X'OA') in the file unless written there
explicitly.

FORMAT SPECIFICATIONS IN ARRAYS

The FORMAT reference, f, of a formatted READ or
WRITE statement (See 8.1) may be an array name
instead of a statement label. If such reference is
made, at the time of execution of the READ/WRITE
statement the first part of the information
contained in the array, taken in natural order,
must constitute a valid FORMAT specification. The
array may contain non-FORMAT information following
the right parenthesis that ends the FORMAT
specification.

The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORMAT
statement (i.e., it begins with a left parenthesis
and ends with a right parenthesis) .

The FORMAT specification may be inserted in the
array by use of a DATA initialization statement, or

FORTRAN-SO Reference Manual Page 84

by use of a READ statement together with an Aw
FORMAT. Example:

Assume the FORMAT specification

(3FIO.3,416)

or a similar 12 character specification is to be
stored into an array. The array must allow a
minimum of 3 storage units.

The FORTRAN coding below shows the various methods
of establishing the FORMAT specification and then
referencing the array for a formatted READ or
WRITE.

C DECLARE A REAL ARRAY
DIMENSION A(3), B(3), M(4)

C INITIALIZE FORMAT WITH DATA STATEMENT
DATA A/' (3Fl', 'O~3,' I '416) 'I .. "

C READ DATA USING FORMAT SPECIFICATIONS
C IN ~Y A

READ(6,A) B, M

C DECLARE AN INTEGER ARRAY
DIMENSION IA(4), B(3), M(4)

C READ FORMAT SPECIFICATIONS __
READ (7,15) IA

C FORMAT FOR INPUT OF FORMAT SPECIFICATIONS
15 FORMAT (4A2)

C READ DATA USING PREVIOUSLY INPUT
C FORMAT SPECIFICATION

READ (7, IA) B 1M

FORTRAN-80 Reference Manual Page B5

SECTION 9

FUNCTIONS AND SUBPROGRAMS

The FORTRAN language provides a means for defining and using
often needed programming procedures such that the statement
or statements of the procedures need appear in a program
only once but may be referenced and brought into the logical
execution sequence of the program whenever and as often as
needed.

These procedures are as follows:

1. Statement functions.

2. Library functions.

3. FUNCTION subprograms.

4. SUBROUTINE subprograms.

Each of these procedures has its own unique requirements for
reference . and defining purposes. These requirements are
discussed in subsequent paragraphs of this section.
However, certain features are common to the whole group or
to two or more of the procedures. These common features are
as. follows~

1. Each of these procedures is referenced by its name
which, in all cases, is one to six alphanumeric
characters of which the first is a letter.

2. The first three are designated as "functions" and
are alike in that:

1. They are always single valued (i.e., they
return one value to the program unit from which
they are referenced).

2. They are referred to by
containing a function name.

an expression

3. They must be typed by type specification
statements if the data type of the
single-yalued result is to be different from
that indicated by the pre-defined convention.

3. FUNCTION subprograms and SUBROUTINE subprograms are
considered program units.

FORTRAN-80 Reference Manual, Page 86

In the following descriptions of these procedures, the term
calling program means the program unit or procedure in which
a reference to a procedure is made, and the term "called
program" means the procedure to which a reference is made.

9.1 THE PROGRAM STATEMENT

The PROGRAM statement
specifying a name for
form of the statement is:

PROGRAM name

provides a means
a main program unit.

of
The

If present, the PROGRAM statement must appear
before any other statement in the program unit.
The name consists of 1-6 alphanumeric characters,
the firs·t of which is a letter. If no PROGRAM
statement is present in a main program, the
compiler assigns a name of $MAIN to"" that program.

9.2 STATEMENT FUNCTIONS

State:ment .functions are defined by a single
arithmetic or logical assignment statement and are·
relevant only to the program unit in which they
appear. The general form of a statement function
is as follows:

f (a1, a2, ••• an) =. e

where f is the function
arguments and e is
expression.

name, the ai' are dummy
an arithmetic or logical

Rules for ordering, structure and use of statement
functions ar~ as follows:

1. Statement function definitions, if they exist
in a program unit, must precede all executable
statements in the uni t and follow' all
sp~cification statements.

2. The ai are distinct variable names or array
elements, but, being dummy variables, they may
have the same names as variables of the same
type appearing elsewhere in the program unit.

3. The expression e is constructed according to
the rules in SECTION 4 and may contain only
references to the dummy arguments and
non-Literal constants, variable and array
element references, utility and mathematical
function references and references to
previously defined statement functions.

FORTRAN-SO Reference Manual Page 'S7

4. The type of any statement function name or
argument that differs from its pre-defined
convention type must be defined by a type
specification statement.

5. The relationship between f and e must conform
to the replacement rules in Section 5.

6. A statement function is called by its name
followed by a parenthesized list of arguments.
The expression is evaluated using the arguments
specified in the call, and the reference is
replaced by the result.

7. The ith parameter in every argument list MUST
agree in type with the ith dummy in the
statement function.

The example below shows a statement function and a
statement function call.

C STATEMENT FUNCTION DEFINITION
C

FUNCl(A,B,C,D} = «A+B)**C)/D

C STATEMENT FUNCTION CALL
C

A12=Al-FUNCl(X,y,Z7,C7)

9.3 LIBRARY FUNCTIONS

Library functions are a group of utility and
mathematical functions which are "built-in" to the
FORTRAN system. Their names are pre-defined to the
Processor and automatically typed~ The functions
are listed in Tables 9-1 and 9-2. In the tables,
arguments are denoted as al,a2, ••• ,an, if more than
one argument is required; or as a if only one is
required. A library function is called when its
name is used in an arithmetic expression. Such a
reference takes the following form:

f(al,a2, ••• an}

where f is the name of the fu~ction and the ai are
actual arguments. The arguments must agree in
type, number and order with the specifications
indicated in Tables 9-1 "and 9-2.

FORTRAN-80 Reference Manual Page 8a

In addition to the functions listed in 9-1 and 9-2,
four additional library subprograms are provided to
enable direct access to the a080 (or ZaO) hardware.
These are:

PEEK, POKE, INP, OUT

For the following:
b, bl, and b2 are BYTE constants or variables
i is an INTEGER constant or variable

PEEK and INP are Logical functions; POKE and OUT
are subroutines. PEEK and POKE allow direct access
to any memory location. PEEK (i) returns the
contents of the memory location specified by i.
CALL POKE(i,b) causes the contents of the memory
location" specified by i to be replaced by the
contents of b. INP and OUT allow direct access to
the I/O ports. INP(b) does an inp,ut from port b
and returns the8-bit value input. CALL OUT(bl,b2)
outputs the value of b2 to'the port specified by
bl.

RAN is another function ,in the FORTRAN library.
RAN is a random number generator that is compatible
with Microsoft's BASIC Compiler and BASIC-80
interpreter. The random number generated is a REAL
decimal number between 0 and 1. The random number
generator is called by a statement of the following
form:

<variable> = RAN(x)

If x < 0, the first value of a new sequence of
random numbers is returned.

If x = 0, the last random number generated is
returned again.

If x > 0, the next random number in the sequence is
generated.

Examples using library functions:

Al = B+FLOAT (I7)

MAGNI = ABS(KBAR)

PDIF = DIM(C,D)

53 = SIN(T12)

ROOT = (-B+SQRT(B**2-4.*A*C»)/
l' (2 . *A)

FORTRAN-80 Reference Manual

TABLE 9-1

Intrinsic Functions

Function
Name Definition

ABS lal
lABS
DABS

AINT
INT
IDINT

AMOD
MOD

AMAXO
AMAXI
MAX a
MAXI
DMAXl

AMINO
AMINI
MINO
MINI
DMINI

FLOAT

IFIX

SIGN
ISIGN
DSIGN

DIM
IDIM

SNGL

DBLE

Sign of a times lar
gest integer <=Ial

al (mod a2)

Max(al,a2, •••)

Min(al,a2, •••)

Conversion from
Integer to Real

Conversion from
Real to Integer

Sign of a2 times lall

al - Min(al,a2)

Types
Argument Function

Real Real
Integer
Double

Real
Real
Double

Real
Integer

Integer
Real
Integer
Real
Double

Integer
Real
Integer
Real
Double

Integer

Real

Real
Integer
Double

Real
Integer

Double

Real

Integer
Double

Real
Integer
Integer

Real
Integer

Real
Real
Integer
Integer
Double

Real
Real
Integer
Integer
Double

Real

Integer

Real·
Integer
Double

Real
Integer

Real

Double

Page 89

'.' FORTRAN-80 Reference Manual Page 90

'TABLE 9-2

Basic External Functions

Number
of Type

Name Arguments Definition Argument Function

EXP 1 e**a Real Real
DEXP 1 Double Double

ALOG 1 In (a) Real Real
DLOG 1 Double Double

ALOGlO 1 10glO (a) Real Real
DLOGlO 1 Double Double

SIN 1 sin (a) Real Real
DSIN 1 Double Double

;, COS 1 cos (a) Real Real
DCOS 1 Double Double

TANH 1 tanh (a) Real Real

SQRT 1 (a) ** 1/2 Real Real
DSQRT .1 Double Double

ATAN 1 arctan (a) Real Real
DATAN 1 Double. Double

ATAN2 2 arctan (al/a2) Real Real
DATAN2 2 Double Double

DMOD 2 al (mod a2) Double Double

FORTRAN-80 Reference Manual Page 91

9.4 FUNCTION SUBPROGRAMS

A program unit which begins with a FUNCTION
statement is called a FUNCTION subprogram.

A FUNCTION statement has one of the following
forms:

t FUNCTION f(al,a2, ... an)

or

FUNCTION f(al,a2, •.. an)

where:

1. t is either INTEGER, REAL, DOUBLE PRECISION or
LOGICAL or is- empty as shown in the second
form.

2. f is the name of the FUNCTION subprogram.

3. The ai are dummy arguments of which there must
be at least one and which represent variable
names, array names or dummy names of SUBROUTINE
or other FUNCTION subprograms.

9.5 CONSTRUCTION OF FUNCTION SUBPROGRAMS

Construction of FUNCTION subprograms must comply
with the following restrictions:

1. The FUNCTION statement must be the
statement of the program unit.

first

2. Within the FUNCTION subprogram, the FUNCTION
name must appear at least once on the left side
of the equality sign of an assignment statement
or as an item in the input list of an input
statement. This defines the value of the
FUNCTION so that it may be returned to the
calling program.

Additional values may be returned to the
calling program through assignment of values to
dummy arguments.

FORTRAN~80 Reference Man.ual

Example:

FUNCTION Z7(A,B,C)

Z7 = 5.*(A-B) + SQRT(C)

C REDEFINE ARGUMENT
B=B+Z7

RETURN

END

Page 92

3. The names in the dummy argument list may not appear
in EQUIVALENCE, COMMON or DATA statements in the
FUNCTION subprogram.

4. I f' a dummy argument is an arr ay name, then an ar r ay
declarator must appear in the subprogram with
dimensioning information consistant with that in
the calling program.

5. A FUNCTION subprogram may contain any defined
FORTRAN statements other than BLOCK DATA
statements, SUBROUTINE statements, another FUNCTION

'statement or any statement which re...ferences either
the FUNCTION being defined or another subprogram
that references the FUNCTION being defined.

6. The logical termination of a FUNCTION subprogram is
a RETURN statement and there must be at least one
of them.

7. A FUNCTION subprogram must physically terminate
with an' END statement.

Example:

FUNCTION SUM (BARY,I,J)
DIMENSION BARY(10,20)
SUM = 0.0
DO 8 K=l,I
D08 M = 1,J

8 SUM = SUM + BARY(K,M)
RETURN
END

FORTRAN-80 Reference Manual Page 93

9.6 REFERENCING A FUNCTION SUBPROGRAM

FUNCTION subprog~ams are called whenever the
FUNCTION name, accompanied by an argument list, is
used as an operand in an expression. Such
references take the following form:

f(al,a2, •.• ,an)

where f is a FUNCTION name and the ai are actual
arguments. Parentheses must be present in the form
shown.

The arguments ai MUST agree in type, order and
number with the dummy arguments in the FUNCTION
statement of the called FUNCTION subprogram. There
is no type conversion of arguments. There must be
at least one argument. Arguments may be any of the
following:

1. A variable name.

2. An array element name.

3. An array name.

4. An expression.

5. A SUBROUTINE or FUNCTION subprogram name.

6. A Hollerith or Literal constant.

If an ai is a subprogram name, that name must have
previously been distinguished from ordinary
variables by appearing in an EXTERNAL statement and
the corresponding dummy arguments in the called
FUNCTION subprograms must be used in subprogram
references.

If ai is a Hollerith or Literal constant, the
corresponding dummy variable should encompass
enough storage units to correspond ~xactly to the
amount of storage needed by the constant.

When a FUNCTION subprogram is called, program
control goes to the first executable statement
following the FUNCTION statement.

·FORTRAN-80 Reference Manual Page 94

The following examples show references to FUNCTION
subprograms.

ZlO = FT1+Z7(D,T3,RHO)

DIMENSION DAT(S,S)

Sl = TOTl + SUM(DAT,S,S)

9.7 SUBROUTINE SUBPROGRAMS

A program
statement
SUBROUTINE
forms:

unit which begins with a SUBROUTINE
is called a SUBROUTINE subprogram. The
statement has one of the following

SUBROUTINE s (al,a2, ••• ,an)

or

SUBROUTINE s

wheres is the name of the SUBROUTINE subprogram
and each ai is a dummy argument which represents a
variable or array name or another SUBROUTINE or
.FUNCTION name.

9.8 CONSTRUCTION OF'SUBROUTINE SUBPROGRAMS

1. The SUBROUTINE statement must be the first
statement of the subprogram.

2. The SUBROUTINE subprogram name must not appear
in any statement other than the initial
SUBROUTINE statement.

3. The dummy argument names must not appear in
EQUIVALENCE, COMMON or DATA statements in the
subprogram.

4. If a dummy argument is an array name then an
array declarator must appear in the subprogram
with dimensioning information consistant with
that in the calling program.

S. If any of the dummy arguments represent values
that are to be determined by the SUBROUTINE
subprogram and returned to the calling program,
these dummy arguments must appear within the
subprogram on the left side of the equality
sign in a replacement statement, in the input
list of an input statement or as a parameter
within a subprogram reference.

FORTRAN-80 Reference Manual Page 95

6. A SUBROUTINE may contain any FORTRAN statements
other than BLOCK DATA statements, FUNCTION
statements, another SUBROUTINE statement, a
PROGRAM statement or any statement which
references the SUBROUTINE subprogram being
defined or another subprogram which references
the SUBROUTINE subprogram being defined.

7. A SUBROUTINE subprogram may contain any number
of RETURN statements. It must have at least
one.

8. The RETURN statement(s) is the
termination point of the subprogram.

9. The physiqal termination of a
subprogram is an END statement.

logical

SUBROUTINE

10. If an actual argument transmitted to a
SUBROUTINE subprogram by the calling program is
the name of a SUBROUTINE or FUNCTION
subprogram, the corresponding dummy argument
must be used in the called SUBROUTINE
subprogram as a subprogram reference.

Example:

C SUBROUTINE-TO COUNT POSITIVE ELEMENTS
C IN AN ARRAY

SUBROUTINE COUNT P(ARRY,I,CNT)
DIMENSIONARRY(7)
CNT = 0
DO 9 J=l,I
IF(ARRY(J))9,5,5

9 CONTINUE
RETURN

5 CNT = CNT+l.O
GO TO 9
END

FORTRAN-BO Reference Manual Page 96

9.9 REFERENCING A SUBROUTINE SUBPROGRAM

A SUBROUTINE subprogram may be called by using a
CALL statement. A CALL statement has one of the
following forms: .

CALL s(al,a2, ..• ,an)

or

CALL s

where s is a SUBROUTINE subprogram name and the ai
are the actual arguments to be used by the
subprogram. The ai must agree in type, order and
number: with the corresponding dummy arguments in
the subprogram-defining SUBROUTINE statement.

The arguments in a CALL statement must comply with
the following rules:

1. FUNCTION and SUBROUTINE names appearing in the
argument list must have previously appeared in
an EXTERNAL statement.

2. If the called SUBROUTINE subprogram contains a
variable array declarator, then the CALL
statement must contain the actual name of the
array and the actual dimension specifications
as arguments.

3. If an item in the SUBROUTINE subprogram dummy
argument list is an-array, the corresponding
item in the CALL statement argument list must
be an array.

When a SUBROUTINE subprogram is called, program
control goes to the first executable statement
following the SUBROUTINE statement.

Example:

DIMENSION DATA(lO)

C THE STATEMENT BELOW CALLS THE
C SUBROUTINE IN THE PREVIOUS PARAGRAPH
C

CALL COUNTP(DATA,lO,CPOS)

FORTRAN-80 Reference Manual Page 97

9.10 RETURN FROM FUNCTION AND SUBROUTINE SUBPROGRAMS

The logical termination of a FUNCTION or SUBROUTINE
subprogram is a RETURN statement which transfers
control back to the calling program. The general
form of the RETURN statement is simply the word

RETURN

The following rules govern the use of the RETURN
statement:

1. -There must be at least one RETURN statement in
each SUBROUTINE or FUNCTION subprogram.

2. RETURN from a FUNCTION subprogram is to the
instruction sequence of the calling program
following the FUNCTION reference.

3. RETURN from a SUBROUTINE subprogram is to the
next executable statement in the calling
program which would logically follow the CALL
statement.

4e Upon return from a FUNCTION subprogram the
single-valued result of the subprogram is
available to the evaluation of the expression
from which the FUNCTION call was made.

5. Upon return -from a SUBROUTINE subprogram the
values assigned to the arguments in the
SUBROUTINE are available for use by the calling
program.

Example:

Calling Program Unit

CALL SUBR(Z9,B7,Rl)

Called Program Unit

SUBROUTINE SUBR(A,B,C)
READ(3,7) B
A = B**C
RETURN

7 FORMAT (F9. 2)
END

In this example, Z9 and B7 are made available to
the calling program when the RETURN occurs.

FORTRAN-80 Reference Manual . Page 98

9.11 PROCESSING ARRAYS IN SUBPROGRAMS

If a calling program passes an array name to a
subprogram, the subprogram must contain the
dimension information pertinent to the array. A
subprogram must contain array declarators if any of
its dummy arguments represent arrays or array
elements.

For example, a FUNCTION subprogram designed to
compute the average of the elements of anyone
dimension array might be the folowing:

Calling Program Unit

DIMENSION Zl(50) ,Z2(25)

Al = AVG (Z 1 , 50)

A2 = Al-AVG{Z2,25)

Called Program Unit

FUNCTION AVG(ARG,I)
DIMENSION ARG(50)
SUM = 0.0
DO 20 J=l,I

20 SUM = SUM + ARG (J)
AVG = SUM/FLOAT(I)
RETURN
END

Note that actual arrays to be processed by the
FUNCTION subprogram are dimensioned in the calling
program and the array names and their actual
dimensions are transmitted to the FUNCTION
subprogram by the FUNCTION subprogram reference.
The FUNCTION subprogram itself contains a dummy
array and specifies an array declarator.

FORTRAN-80 Reference Manual Page 99

Dimensioning information may also be passed to the
subprogram in the paramater list. For example:

Calling Program Unit

DIMENSION A(3,4,5)

CALL SUBR(A,3,4,5)

END

Called Program Unit

SUBROUTINE SUBR(X,I,J,K)
DIMENSION X(I,J,K)

RETURN
END

It is valid to use variable dimensions only when
the array name and all of the variable dimensions
are dummy arguments. The variable dimensions must
be type Integer. It is invalid to change the
values· of any··of . the variab-ledimensions within the
called program.

FORTRAN-80 Reference Manual Page 100

9.12 BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram has as its only purpose the
initialization of data in a COMMON block during
loading of a FORTRAN object program. BLOCK DATA
subprograms begin with a BLOCK DATA statement of
the following form:

BLOCK DATA [subprogram-name]

and end with an END statement. Such subprograms
may contain only Type, EQUIVALENCE, DATA, COMMON
and DIMENSION statements and are subject to the
following considerations:

1. If any element in a COMMON block is. to be
initialized, all elements of the block must be
listed in the COMMON statement even though they
might not all be initialized.

2. Initialization of data in more than one COMMON
block may be accomplished in one BLOCK DATA
subprogram.

3. .There may be more .than: one BLOCK
subprogram loaded'at any given time.

DATA

4. Any particular COMMON block item should only be
initialized by one program unit.

Example:

BLOCK DATA
LOGICAL Al
COMMON/BETA/B(3,3)/GAM/C(4)
COMMON/ALPHA/Al,F,E,D
DATA B/1.1,2.5,3.8,3*4.96,

. 12*0.52,1.1/,C/l.2EO,3~4.0/
DATA Al/ .. TRUE. /, E/-5. 6/

FORTRAN-80 Reference Manual Page 101

9.13 PROGRAM CHAINING

Programs may be loaded and executed (CHAINed) by a
FORTRAN program through the CALL FCHAIN facility.
The general syntax is:

CALL FCHAIN ('filename')

where filename is a valid operating-
specification of a machine

exact syntax varies under
systems. Refer to the

system-dependent file
executable file. The
different operating
"Microsoft FORTRAN-80 User's Manual", Section 3.

RULES:

1. 'filename' must be valid according to your
operating system's rules.

2. The program CHAINed must be a "MAIN" program.
That is, one having an ENTRY Point. FORTRAN,
COBOL, and assembly language subroutines do not
conntain a "MAIN" entry point.

3. Parameters may not be passed
programs ..

to CHAINed

4~ Illegal filename, Illegal drive specification,
File not found, Out of memory, and Disk read
et~6rs will ~es~ltin a fatal **IO** Erroro

FORTRAN-80 Reference Manual Page 102

APPENDIX A

Language Extensions and Restrictions

The FORTRAN-80 language includes the following extensions to
ANSI Standard FORTRAN (X3.9-l966).

1. If c is used in a 'STOP c' or 'PAUSE c' statement,
c may be any six ASCII characters.

2. Error and End-of-File branches may be specified in
READ and WRITE statements using the ERR= and END=
options.

3. The standard subprograms PEEK, POKE, INP, and OUT
have .been added to the FORTRAN library.

4. Statement functions may use subscrip.ted variables.

5. Hexadecimal 'constants may be used wherever Integer
constants are normally allowed.

6 •. ·The literal form of Hollerith. data (character
string, between apostrophe characters) is permitted
in place of the standard nH form.

7. Holleriths and Literals are allowed in expressions
in place of Integer constants.

8. There is no restriction
continuation lines.

to the number of

9. Mixed mode expressions and assignments are allowed,
and conversions are done automatically.

FORTRAN-80Reference Manual Page 103

FORTRAN-80 places the following restrictions upon Standard
FORTRAN.

1. The COMPLEX data type is not implemented.

2. The specification statements must appear in the
following order:

1. PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA

2. Type, EXTERNAL, DIMENSION

3. COMMON

4 . EQUIVALENCE

5. DATA

6. Statement Functions

3. A different amount of computer memory is allocated
for each of the data types: Integer, Real, Double
Precision, Logical.

4. The equal sign of a replacement statement and the
first comma of a DO statement must appear on the
initial statement line.

5. In Input/Output list specifications,
enclosed -'inpa-r-entheses are not allowed.

sublists

Descriptions of these language extensions and restrictions
are included at the appropriate points in the text of this
document.

FORTRAN-80 Reference Manual Page 104

APPENDIX B

I/O Interface

Input/Output operations are table-dispatched to the driver
routine for the proper Logical Unit Number. $LUNTB is the
dispatch table. It contains one 2-byte driver address for
each possible LUN. It also has a one-byte entry at the
beginning, which contains the maximum LUN plus one.

The initial run-time package provides for 10 LUN's (1 - 10).
units 1, 3, 4, and 5 are preassigned to the console (TTY).
unit 2 is preassigned to the Line Printer. Units 6-10 are
preassigned to Disk Files (see User's Manual, Section 3).

Any of these may be redefined by the user simply by changing
the appropriate entries in $LUNTB. The runtime system uses
LUN 3 for errors -and other user communication. Therefore,
LUN 3 should correspond to the operator console. The
initial structure of $LUNTB is shown in the listings
following this appendix.

It is also possible to add LUNs to $LUNTB. If you do this,
change the MAXLUN+l byte at the label $LUNTB, and make sure
you also change the value of MAXLUN in the DSKDRV.MAC
module.

The device drivers also contain local dispatch tables. Note
that $LUNTB contains one address for each device, yet there
are really seven possible operations per device:

1) Formatted Rea~
2) Formatted Write
3} Unformatted Read
4) Unformatted Write
5} Rewind ~

6) Backspace
7} Endfile

Each device driver contains up to seven routines. The
starting addresses of each of these seven routines are
placed at the beginning of the driver, in the exact order
listed above. The entry in $LUNTB then points to this local
table, and the runtime system indexes into it to get the
address of the appropriate routine to handle the requested
I/O operation.

FORTRAN-BO Reference Manual Page 105

The following conventions apply to the individual I/O
routines:

1. Location $BF contains the data buffer address for
READs and WRITEs.

2. For a WRITE, the number of bytes to write is in
location $BL.

3. For a READ, the number of bytes read should be
return~d in $BL.

4. All I/O operations set the condition codes before
exit to indicate an error condition, end-of-file
condition, or normal return:

a) CY=l, Z=don't care - I/O error
b) CY=O, Z=O - end-of-file encountered

. c) CY=O, Z=l - normal return

The runtime system checks the condition codes after
calling the driver. If they indicate a non-normal
condition, control is passed to the label specified
by "ERR=" or "END=" or, if no label is specified, a
fatal error results.

5. $IOERR is a global routine which prints an "ILLEGAL
I/O OPERATION" message (non-fatal). This routine
may be used if there are some operations not
allowed on a particular device (i.e. Unformatted
I/O on a TTY). .

NOTE

The I/O buffer has a fixed
maximum length of 132 bytes.
If a driver allows an input
operation to write past the
end of the buffer, essential
runtime variables may be
affected. The consequences
are unpredictable.

The listings following this appendix contain an. example
driver for a TTY. REWIND, BACKSPACE, and ENDFILE are
implemented as No-Ops and Unformatted I/O as an error. This
is the TTY driver provided with the runtime package.

MACS0 1.0 PAGE 1

00100 TrY I/O DRIVER
00200

0000 00300 EXT ~IOERR, SEL, SBF, $ERR~~
0012 00400 IR.EX:ER EO) 22 i INIDI' mx::o TOO G
0000 00500 ENI'RY $DRV3
0000 0013 I 00600 $DRV3: IM DRV3FRi FORMATl'ED RFAD
0002 0042 I 00700 OW DRV3FW i FORMATTED WRITE
0004 0010 00800 DW DRV3BR iBINARY READ
0006 0010 00900 OW DRV3BW iBmARY WRITE
0008 000E I 01000· OW DRV3RE i REWIND
000A 000E I 01100 OW DRV3BA : BACKS PAC E
000C 000E I 01200 OW DRV3EN :ENDFILE
000E AF 01300 DRV3EN: XRA A iTHESE OPERATIONS ARE

01400 i NO-OPS FOR 'tTY
00BE 01500 DRV3RE EXJU DRV3EN
000E . 01600 ORV3BA rou DRV3EN
00BF C9 01700 ~
0010 C3 0000 * 01800 DRV3BW: JMP $IOERR i ILLEGAL OPERATIONS

01900 i (PRINT ERROR AND RETURN)
0010 02000 DRV3BR roo DRV3BW
0013 AF 02100 DRV3FR: XRA A iRFAO
0014 32 0000 * 02200 STA

~
iZERa BUFFER LENGl'H

0017 CD 0000 * 02300 DRV31: CALL i INRJT A CHAR
00lA E6 7F 02400. ANI 177 iAND OFF PARITY
0alC FE 0A 02500 CPI 10 i I~RE LINE FEEIS
00lE CA 0017 I 02600 JZ ·DRV31
0021 FS 02700 PUSH PSW iSAVE rr
0022 2A 0015* 02800 LHLD SBL iGET CHAR FOSIT IN BUFFER
0025 26 00 02900 MVI B,0 iONLY 1 BYTE
0027 EB 03000 XCHG

$aF 0028 2A 0000 * . 03100 LHLD iGET BUFFER ADDR
002B . 19 03200 DAD 0 iADD OFFSm'
002C F1 03300 pop PSW iGET CHAR
0020 77 03400 MeV M,A i Pt1I' IT m BOFFER
002E 13 03500 INX D i !NCREMEN!' SBL
002F EB 03600 XCHG
0030 22 0023 * 03700 SHLD ~~ :SAVE IT
0033 FE 0D 03800 CPI iC~?
0035 CB 03900 RZ iYES-OONE
0036 7D 04000 MOV AiL i$BL
0037 FE 80 04100 CPI 1 8 i MAX IS DECIMAL 128
0039 DA 0017 I 04200 JC DRV31 iGET NEXT CHAR
003C .' CD 0000 * 04300 CALL $ERR
003F 12 04400 DB lREX:ER ; INPUT REX:ORD TOO IDNG
0040 AF 04500 XRA A iCliAR FIAGS
0041 C9 04680 REI'
0042 3A 0031 * 04700 DRV3FW: ~ SBL iBUFFER LENGrH
0045 87 04800 ORA A

MACS0 1.0 PAGE

0"'46 C8 049~'"
0047 2A 0029 '* 05000

'004A 3D 0510'"
004B F5 05200
0"'4C 3E 00 05300
004E CD 00"'0 * 05400
0"'51 7E 0550~
~UJ52 FE 2B 05600
0054 CA 0079 1 0570~
0057 FE 31 05800
0059 C2 0064 I 05900
005C 3E OC 06000
005E CD 004F * 06100
0061 C3 0079 • 06200
0064 3E 0A 06300
0066 CD 005F * 06400
0069 7E 06500
006A FE 20 06600
006C CA 0079 1 06700
006F FE 30 06800
0071 C2 0079 • 06900
0074 3E 0A 07000
0076 CD 0067 * 07100
0079 F1 07200
007A 23 07300
00iS ca 07400
007C F5 07500
0070 .iE 07600
007E 23 ~7i~H~
007F CD 0077 * 07800
0082 Fl 07900
0083 3D 08000·
0084 C3 0078 • 08100
0087 08200

MACa0 1.0 PAGE

~IOERR 0011*
;;»Tl'YIN 0018*
DRV3FR·· 0013'
DRV3RE 00~E •
DR3tw2 0079'

~BL 0043*
:;;TI'YOT 0080*
DRV3FW 0042'
DRV3BA 000E •
DR3FWI. 0064'

2

RZ
LHLD
OCR
PUSH
MVI
CALL
MOV
CPI
JZ
CPI
JNZ
MVI
CALL
JMP

DR3EWl: MVI
CALL
MOV
CPI
JZ
CPI
JNZ
MVI
CALL

DR3EW2: RJP
INX

DRV32: RZ
PUSH
MOV
mx
CALL
pop
OCR
JMP
END

3

$SF 0048*
IRECER 0012
DRV3BR 0010 1

DRV3EN 000E 1

DRV32 0078'

i EMPl'Y BUFFER
$BF i BUFFER ADDRESS
A iOECREMENl' LENGrH
PSW iSAVE IT

~, iCR
iOUl'PUT IT

A,M iGET FIRST CHAR IN BUFFER
1+'

DR3EW2 iNO LINE FEEDS
'I'
DR3FWI iNor FORM FEED
A,12 iFORM FEED
S't'rYOl' iOur:ror IT
DR3EW2
A,10
S't'rYOl'

iLF
A,M ' , iGET CHAR BACK

DR3FW2 iNO MORE LINE FEEDS
10'
DR3FW2 iNC MORE LINE FEEI:S
A,10 iLF
S't'rYOl'
PSW iGET LENGrH BACK
H i INCREMENl' PI'R

PSW i SAVE CHAR COUNT
A,M iGET NIDfl1 CHAR
H i INCREMEN!' Pm
$TI'YOl' iOur:ror CHAR
PSW iGET CCtJNl'
A iDECREMENl' IT
DRV32 iONE MORE TIME

$ERR 0030*
SDRV3 0000'
DRV3BW 0010'
DRV31 0017'

MACa9 1.0 PAGE 1

99109 :COMMENr *
09299 i DRIVER ADDRESSES FOR LUN IS 1 THROUGH 110
99210 tPr 0991 09229 EQU 1 i UNIT 2 IS LPr

01091 910239 DSK EQU 1 iONITS 6-10 ARE IEK
00100 99235 ore roo 0 :DTC CQ\1MUNlCATIONS UNIT 4

09240 i
09300

00010 90499 ENrRY ~tmB 0000 99500 EXT RV3
0000 08 00609 SLUNTB: DB 13 -MAX LON + 1
9991 10099 * 10107109 OW $DRV3 ; THEY ALL POINT TO $DRV3 FOR I-DW
9003 998100 IFF LPI'

0109109 OW $DRV3
010103 01099 ENDIF
10903 91199 1FT LPl'
0903 912100 EX!' LPl'DRV
9903 90109 * 01399 OW LPI'DRV
9095 01499 ENDIF
9905 0901 * 015~9 OW SDRV3
10997 015110 IFF rrn:
9097 0995 * 916100 DW SDRV3
0999 016102 ENDIF
9999 1016104 1FT DI'C

91695 EXT ~~ 91606 OW
9099 91698 ENDIF
10999 . 010107 * 017010 OW SDRV3
0998 91899 IFF I:sK

919109 ow (V3 102990 OW RV3
10211010 OW DRV3
022010 OW RV3
02399 OW DRV3

0010B 02490 ENDIF
090B 10251010 1FT ISK
10 10 lOB 1026109 E~ r:6KDRV
101000 001010 * 02700 ow I:sKDRV
100100' . 000B *. 102899 DW DSKDRV 0010F . IOIOIOD * 1029100 DW IlSKDRV
10011 01OIOF * 10310010 OW Il3KDRV
101013 0011 * 1031109 OW Il3KDRV
10915 93299 ENDIF
9915 - 933109 END

MACS9 1.9 PAGE 2

LPl' 109101 DSK 100101 ore 09109 SLUNTB 09100'
$DRV3 10909* LPIDRV 010103* DSKDRV 101013*

FORTRAN-80 Reference Manual Page 106

APPENDIX C

Subprogram Linkages

This appendix defines a normal subprogram call as generated
by the FORTRAN compiler. It 1S included to facilitate

. linkages between FORTRAN programs and those written in other
languages, such as 8080 Assembly.

A subprogram reference with no parameters generates a simple
"CALL" instruction. The corresponding subprogram should
return via a simple "RET." (CALL and RET are 8080 opcodes
see the assembly manual or 8080 reference manual for
explanations.)

A subprogram reference wi th parameters results .in a somewhat
more complex calling sequence. Parameters are always passed
by reference (i.e., the thing passed is actually the address
of the low byte' of the actua1 argument). Therefore,
parameters always occupy two bytes each, regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the register-s. Parameter
1 will be in HL, 2 in DE (if present), and 3 in Be
(if present).

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HL.

2. Parameter 2 in DE~

3. Parameters 3 through n in a contiguous data block.
BC will point to the low byte of this data block
(i.e., to the low byte of parameter 3).

Note that, with this scheme, the subprogram must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. Neither the compiler nor
the runtime system checks for the correct number of
parameters.

If the subprogram expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system
subroutine which will perform this transfer. This argument

~ .. FORTRAN-80 Reference Manual Page 107

transfer routine is named $AT, and is called with HL
pointing to the local data area, BC pointing to the third
parameter, and A containing the number of arguments to
transfer (i.e., the total number of arguments minus 2). The
subprogram is responsible for saving the first two
parameters before calling $AT. For example, if a subprogram
expects 5 parameters, it should look like:

SUBR:

PI:
P2: .
P3 :

SHLD PI
XCHG
SHLD P2
MVI A,3
LXI H,P3
CALL $AT

[Body of subprogram]

RET
DS
DS
DS

2
2

'6

: SAVE PARAMETER 1

:SAVE PARAMETER 2
:NO. OF PARAMETERS LEFT
:POINTER TO LOCAL AREA
:TRANSFER THE OTHER 3 PARAMETERS

:RETURN TO CALLER
:SPACE FOR PARAMETER 1
:SPACE FOR PARAMETER 2
:SPACE FOR PARAMETERS 3-5

When accessing parameters in a subprogram, don't forget that
.. they ar;e pointers to the actual arguments passed.

NOTE

It is entirely up to the
programmer to see to it that'
the arguments in the calling
program match in number, ~,
and length with the parameters
expected by the subprogram.
This applies to FORTRAN
subprograms, as well as those
written in assembly language.

FORTRAN Functions (Section 9) return their values in
registers or memory depending upon the type. Logical
results are returned in (A), Integers in (HL). Extended
integers and Reals return results in memory at $AC. Double
Precision Reals return results in memory at $DAC.. $AC and
$DAC are the addresses of the low bytes of the mantissas.

FORTRAN-80 Reference-Manual Page 108

APPENDIX D

ASCII CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.

000 NUL 043 + 086 V
001 SOH 044 , 087 W
002 STX 045 0!38 X
003 ETX 046 . 089 Y
004 EOT 047 / 090 Z
005 ENQ 048 0 091 [
006 ACK 049 1 092 \
007 BEL 050 2 093]
008 BS. 051 3 094

009 HT 052 4 095
010 LF 053 5 096

,

011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 SO 057 9 100 d
015 SI 058 101 e
016 DLE 059 i 102 f
017 DCl 060 < 103 g
018 DC2 061 = 104 h
019 DC3 062 > 105 i
020 DC4 063 ? 106 j
021" -·--·NAK -9-64-- @ 107- k
022 SYN 065 A 108 1
023 ETB 066 B 109 m
024 CAN 067 C 110 n
025 " EM 068 D III 0

026 SUB - 069 E 112 P
027 ESCAPE 070 F 113 q
028 FS 071 G "114 r
029 GS 072 H 115 s
030 RS 073 I 116 t
031 US 074 J 117 u
032 SPACE 075 K 118 v
033 ! 076 L 119 w
034 If 077 M 120 x
035 i 078 N 121 y
036 $ 079 0 122 z
037 % 080 P 123 ! 038 & 081 Q 124
039 082 R 125
040 (083 S 126
041) 084 T 127 DEL
042 * 085 U

LF=Line Feed FF=Form Feed CR:;Carriage Return DEL=Rubout

FORTRAN-SO Reference Manual Page 109

APPENDIX E

Referencing FORTRAN-SO Library Subroutines

The FORTRAN-SO library contains a number of subroutines that
may be refere~ced by the user from FORTRAN or assembly
programs.

1. Referencing Arithmetic Routines

In the following descriptions, $AC refers to the
floating accumulator; $AC is the address of the
low' byte of the mantissa. $AC+3 is the address of
the exponent. $DAC ref"er s to- the DOUBLE PRECISION
accumulator; $DAC is the address of the low byte
of the mantissa. $DAC+7 is the address of the
DOUBLE PRECISION exponent.

All arithmetic routines (addition, subtraction,
multiplication, division, exponentiation) adhere to
the following calling conventions.

1. Argument 1 is passed in "the registers:
Integer" in [HL]
Real in $AC
Double in $DAC

2. Argtimpnt 2 is passed either' in registers, or in
memory depending upon the type:

a. Integers are passed in [HL] , or [DE] if
[HL] contains Argument 1.

b. Real and Double Precision values are
passed in memory pointed to by [HL].
([HL] points to the low byte of the
mantissa.)

The following arithmetic routines are contained in
the Library:

FORTRAN-80 Reference Manual Page 110

Function Name Argument ~ ~ Argument ~ ~

Addition $AY Integer*4 Integer
$Al Integer~4 Integer*4
$AA Real Integer
$AE Real Integer*4
$AB Real Real
$AQ Double Integer
$AV Double Integer*4
$AR Double Real
$AU Double Double

Division $D9 Integer Integer
$DY Integer*4 Integer
$Dl Integer*4 Integer*4
$DA Real Integer
$DE Real Integer*4
$OB Real Real
$DQ Double Integer
$OV Double Integer*4
$DR Double Real
$OU Double. Double

Exponentiation $E9 Integer Integer
$EY Integer*4 Integer
$El Int"eger*4 Integer*4
$EA Real Integer
$EE Real Integer*4
$EB Real Real
$EQ Double Integer
$EV Double Integer*4
$ER Double Real
$EU Double Double

Multiplication $M9 Integer Integer
$MY Integer*4 Integer
$Ml Integer*4 Integer*4
$MA Real Integer
$ME Real Integer*4
$MB Real Real
$MQ Double Integer
$MV Double Integer*4
$MR Double Real
$MU Double Double

Subtraction $5Y Integer*4 Integer
$51 Integer*4 Integer*4
$SA Real Integer
SSE Real Integer*4
$SB Real Real
$SQ Double Integer
$SV Double Integer*4
$SR Double Real
$SU .Double Double

FORTRAN-SO Reference Manual Page III

2.

Additional Library routines are provided for
converting between value types. Arguments are
always passed to and returned by these conversion
routines in the appropriate registers:

Logical in [A]

Integer in [HL]

Extended Integer in $AC

Real in $AC

Double Precision REAL in $DAC

Name Function

"$CD Integer to Integer*4
$CA Integer to Real
$CC Integer to Double'

$C4 Integer*4 to Integer
$CS' Integer*4 to Real
$C6 Integer*4 to Logical
$C7 Integer*4 to Double

$CH Real to Integer
$CL Real to Integer*4
$CJ Real to Logical
$CK Real to Double

$CX Double to Integer
$CO Double to Integer*4
$CY Double to Real
$CZ Double to Logical

Referencing Intrinsic Functions

Intrinsic Functions are passed their parameters in
H,L and D,E. If there are three arguments, B,C
contains the third parameter. If there are more
than three arguments, B,C contains a pointer to a
block in memory that holds the remaining
parameters. Each of these parameters is a pointer
to an argument. (See Appendix B.)

For a MIN or MAX function, the number of arguments
is passed in A.

FORTRAN-BO Reference Manual Page .112

NOTE

None of.· the functions (except INP and OUT)
may take a byte variable as· an argument.
Byte variables must first be' converted to
the type expected by the function.
Otherwise, results will be unpredictable.

3. Formatted READ and WRITE Routines

A READ or WRITE statement calls one of the
following routines:

$W2 (2 parameters)
$W5 (5 parameters)

Initialize for an· I/O transfer
to a device (WRITE)

$R2 (2 parameters)
$R5 (5 parameters)

Initialize for an I/O transfer
from a device (READ)

These routines adhere to the following calling
conventions:

1. H,L points to the LON

2. D,E points to the beginning of the FORMAT
statement

3. If the routine has five parameters, then B,C
points to a block of three parameters:

a. the address for an ERR= branch

b. the address for an EOF= branch

c. the address for a REC= value

The routines that transfer values into the I/O
buffer are:

$IO transfers integers
$I1 transfers real numbers
$I2 transfers logicals
$I3 transfers double precision numbers
$I4 transfers extended integers (4 bytes)

FORTRAN-SO Reference Manual Page 113

Transfer routines adhere to the following calling
conventions:

1. E,L points to a location that contains the
number of dimensions for the variables in the
list

2. D,E points to the first value to be tran~ferred

3. B,C points to the second value to be
transferred if there are exactly two values to
be transferred by this call. If there are more
than two values, B,C points to a block that
contains pointers to the second through nth
values.

4. Register A contains the number of parameters
(including H,L) generated by this call.

The routine $ND terminates the I/O process.

Example:
EXTRN $W2,$IO,$ND
ENTRY TEST

TEST: .' ' LXI H,LON
LXI D,FORMAT
CALL $W2

LXI H,DIMENS
LXI D,NUMBER
MVI A,2
CALL $10

CALL $ND

RET
LON: DW I
FORMAT: DB ' (11H RESULT IS=,15) ,
DIMENS: DW I
NUMBER: DW 9999

END TEST

FORTRAN-ao Reference Manual Page 114

4. Loading and Storing Floating Accumulator

In the following definitions, $AC refers to the
floating accumulator and $DAC refers to the DOUBLE
PRECISION accumulator.

To Load Floating Accumulator:
(H,L points to value to be loaded.)

Name

$Ll

$L3

Function

Loads into $AC, 4 bytes

Loads into $DAC, a bytes

To Store Floating Accumulator:
(H,L points to memory where value is to be stored)

Name

$Tl

$T3

Function

Stores 4 bytes from $AC

Stores a bytes from $DAC

FORTRAN-80 Reference Manual Page 115

INDEX

Arithmetic Expression •• 25-26, 49
Arithmetic IF • • •• 44, 49, 51
Array •••••••••• 14, 20, 34-35, 37-38,

40-41, 60, 83, 92-93,
98-99

Array Declarator • • 20
Array Element ..• • • • • 14, 20, 27, 32, 39
ASCII Character Codes • • 108
ASSIGN • • • • • 44, 47-48
Assigned GOTO •••••• 44, 47

BACKSPACE •
BLOCK DATA

• • 64
• • 34, 37, 95, 100

CALL •••••••••• 44, 56, 96
Characteristic • • • • • 23
Comment Line • • • • 11
COMMON • • •
Computed GOTO •
Constant·
Continuation
CONTINUE
Control Statements

34, 38-41, 92, 94, 100
• 44, 46

• • • • 14-15
• • 9-10
• • 44, 54

• 44

DATA • • • •• . • • • • • 34 , 41, 92, 94, 100
Data Representation .••• 14
Data Storage 22
DECODE • • • • • • • • • 65
DIMENSION •••••••• 20, 34, 37, 100
Disk Files • • • • • • • 63
DO ••••••••••• 44, 50-52
DO Implied List • • • • . 66
Double precision •••• 14, 24
Dummy • • • • • • 94-96, 98-99

ENCODE • • • .• • • 65
END. • • • ••• 44, 56, 92, 95, 100
END Line • • 11
ENDFILE • • • • • 64
EQUIVALENCE. • • 34, 39-41, 92, 94, 100
Executable ••••••• 12, 34, 44
Expression ••••••• 25-26, 31-32
Extended Integer • • 15
Extended Range ••••• 53
EXTERNAL • • •• •• 34, 37, 93, 96
External Functions . • • 90

Field Descriptors • • 69
FORMAT • • • • • • • • • 58-61, 68, 72, 74-84
Formatted READ • • • • • 58

• .61 Formatted WRITE •
FUNCTION • • • • • • 34, 37, 85, 91-97, 99

GOTO • • 44-45, 51

• • 22, 31, 42 Hexadecimal •
Holleri th •• II • 15, 20, 22, 31, 42, 60,

I/O • • •
I/O List
IF • • •
IMPLICIT • • • •
INCLUDE •
Index • •
Initial Line
INP • • •
Integer •
Integer*2 · ·
Integer*4 • •
Intrinsic Functions •

Label . · . · · · · · Library Function
Library Subroutines · Line Format · · · List Item . · · ·

74-76, 93

57, 104

· · 65
44, 49
43
13
51

· · 10
87

· · 14, 19, 23
22

• • 15, 18, 22, 24
• • 89, 111

· · 9, 12, 44-45, 51

· · 85, 87

· · 109

· · 9

· · 66
Literal · · · 20, 22, 31, 42,

93
Logical · · · 14, 19, 23,
Logical Expression · 27, 30, 50
Logical: IF · · · · · · · 44, 50-51
Logical Operator · · 29
Logical Unit Number · · · 58, 62,
LUN . . · · · 58, 62,

Mantissa • • 23

Nested ••• • • 53
Non-executable • • • • • 12, 34
Numeric Conversions • • • 70

OPEN •
Operand •
Operator
OUT •

64
• • • • 25
• • • .. 25

• • 87

104
104

PAUSE • • • •
PEEK • • • •
POKE • • • •
PROGRAM •

• • 44, 51, 55
.• • • • 87

• • 87
• • 34, 86, 95

RAN • • .. 88
Range • • •• •••• 51

76

75-76,

READ ••••••.••• 59, 62, 68, 78, 81-84,
112

Real •••••••••. 14, 19, 23
Relational Expression • . 27-28

Relational Operator . • . 28
Replacement Statement •• 32, 50
RETURN • • • • • 44, 51, 56, 92, 95, 97
REWIND . . • • • • • • • 64

Scale Factor .••••• 78
Specification Statement • 34
Statement Function • 34, 85-86
STOP • . • • • • 44, 51, 55
Storage • • • • • 35
Storage Format . • • • • 14
Storage Uni t • • • • • • 22-23, 39
Subprogram • 37, 56, 85, 91-100, 106
SUBROUTINE • 34, 37, 56, 85, 92-97
Subscript • • • • • • 20-21, 27
Subscript Expression •• 21, 27

Type ••••••• • 100
Type Statement ••••• 35

Unconditional GOTO • • • 45
Unformatted I/O • • • • • 62

Variable

WRITE • •

• 14, 19, 32, 38, 93

• 61-62, 68; 78, 81-84,
112

utility
software
package
reference manual

Microsoft, Inc.
Microsoft Building

10700 Northup Way
Bellevue, WA 98004

utility
software
package
reference manual

for 8080 microprocessors

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft, Inc. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied only in
accordance with the terms of the agreement. It is against the law to copy The Utility Software
Package on cassette tape, disk, or any other medium for any purpose other than purchaser's
personal use.

Copyright © Microsoft, Inc., 1981

LIMITED WARRANTY

MICROSOFT, Inc. shall have no liability or responsibility to purchaser or to any other person or entity with
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by this product,
including but not limited to any interruption of service, loss of business or anticipatory profits or
consequential damages resulting from the use or operation of this product. This product will be exchanged
within twelve months from date of purchase if defective in manufacture, labeling, or packaging, but except
for such replacement the sale or subsequent use of this program is without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY
MICROSOFT, INC. ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR
FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the Problem
Report at the back of this manual.

CP/M is a registered trademark of Digital Research.
The Utility Software Package, MACRO-80, LINK-80, CREF-80 1 and LIB-80 are trademarks of
Microsoft, Inc.

8401-343-04

Contents

Chapter 1 Introduction

1.1 Contents of the Utility Software Package 1-1
1.2 System Requirements 1-2
1.3 Whom Is the Utility Software Package for? 1-2
1.4 A Word about This Manual 1-3
1.5 Overview 1-4

Chapter 2 Features of the Utility Software Package

2.1 Two Assembly Languages 2-2
2.2 Relocatabilitv 2-2
2.3 Macro Facilitv 2-2
2.4 Conditional Assembly 2-3
2.5 Utility Programs 2-3

Chapter 3

3.1
3.2
3.3
3.4
3.4.1
3.4.2

Chapter 4

Programming with the Utility Software Package

Source File Organization 3-1
Symbols 3-3
Opcodes and Pseudo-ops 3-9
Arguments: Expressions 3-10

Op-e--iands 3-10
Operators - 3-14

Assembler Features

4.1 Single-Function Pseudo-ops 4-1
4.2 Macro Facility 4-36
4.3 Conditional Assembly Facility 4-4S

Chapter 5 Running MACRO-SO

5.1 Invoking MACRO-SO 5-2
5.2 MACRO-SO Command Line 5-2
5.3 MACRO-80 Listing File Formats 5-13
5.4 Error Codes and Messages 5-15

Chapter 6

6.1
6.2
6.2.1
6.2.2
6.3

LINK-80 Linking Loader

Invoking LINK-SO 6-1
LINK-SO Commands 6-2

Filenames 6-3
Switches 6-4

Error Messages 6-19

Chapter 7

7.1
7.2

Chapter 8

8.1
8.2

Appendix A

Appendix B

B.l
B.2
B.3
B.4

Appendix C

Appendix D

Appendix E

Appendix F

CREF-80 Cross Reference Facility

Creating a CREF Listing 7-1
CREF Listing Control Pseudo-ops

LIB-80 Library Manager

Sample LIB-80 Session
LIB-80 Commands 8-3

8-2

7-3

Compatibility with Other Assemblers

The Utility Software Package with TEKDOS

TEKDOS Command Files
MACRO-80 B-1
CREF-80 B-2
LINK-80 B-2

ASCII Character Codes

B-1

Format of LINK Compatible Object Files

Table of MACRO-80 Pseudo-ops

Table of Opcodes

F.l Z80 Opcodes F-l
F.2 8080 Opcodes F-3

Index

Contents

Chapter 1 Introduction

1.1 Contents of the Utility Software Package 1-1
1.2 System Requirements 1-2
1.3 Whom Is the Utility Software Package for? 1-2

Books on Assembly Language Programming 1-2
1.4 A Word about This Manual 1-3

Organization 1-3
Syntax Notation 1-3

1.5 Overview 1-4

CHAPTER 1

INTRODUCTION

Welcome to the world of Utility
programming. During the course of
learn what the Utility Software Package
and how to use it.

,

Software Package
this manual, we will
is, why you use it,

1.1 CONTENTS OF THE UTILITY SOFTWARE PACKAGE

One diskette with the following files:

MSO.COM - MACRO-SO Macro Assembler program
LSO.COM - LINK-SO Linking Loader program
CREF80.COM - Cross-Reference Facility
LIB.COM - Library Manager program

(CP/M versions only)

One Manual

The Utility Software Package Reference Manual

IMPORTANT

Always make backup copies of
your diskettes before using
them.

INTRODUCTION Page 1-2

1.2 SYSTEM REQUIREMENTS

~ACRO-80 requires about 19K of memory, plus about 4K for
buffers. LINK-80 requires about 14K of memory. CREF-80
requires about 6K of memory. LIB-80 requires about SK of
memory. The operating system usually requires about 6K
bytes of memory. So a minimum system requirement for the
Utility Software Package is 29K bytes of memory. While it
is possible to run Utility Software Package programs with
only one disk drive, we recommend strongly that you have two
disk drives available.

1.3 WHOM IS THE UTILITY SOFTWARE PACKAGE FOR?

The Utility Software Package is a complete assembly language
development system with powerful features that support
advanced assembly language programming skills. This manual
describes the Utility Software Package thoroughly, but the
descriptions assume that the ~reader understands assembly
language programming and has experience with an assembler.

If you have never
suggest that you
assembler.

programmed
gain some

in assembly
experience

language, we
on a simpler

Books on Assembly Language Programming

We can also recommend the following books for
instruction in assembly language programming:

basic

Leventhal, Lance
Programming.

A. 8080A/B08S Assembly Language
Berkeley: Osborne/McGraw-Hill, 1978.

Leventhal, Lance A. Z80 Assembly Language Programming.
Berkeley: Osborne/McGraw-Hill, 1979.

Zaks, Rodnay. Programming the zao. Second edition.
Berkeley: Sybex, 1980.

INTRODUCTION Page 1-3

1.4 A WORD ABOUT THIS MANUAL

Organization

In front of each chapter is a contents page that expands the
entries on the contents page at the beginning of the manual.
Chapter 1 gives introductory, background, and overview
information about the Utility Software Package. Chapters
2-8 describe the use and operation of the Utility Software
Package programs. The manual concludes with several
appendices which contain some helpful reference information.

Syntax Notation

The following notation is used throughout this manual in
descriptions of command and statement syntax:

[] Square brackets indicate that the enclosed entry is
optional.

< > Angle brackets indicate user entered data. When
the angle brackets enclose lower case text, the
user must type in an entry defined by the text;
for example, <filename>. When the angle brackets
enclose upper case text, the user must press the
key named by the text; for example, <RETURN>.

{} Braces indicate that the user has a choice between
two or more entries. At least one of the entries
enclosed in braces must be chosen unless the
entries are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as
many times as needed or desired.

CAPS Capital letters indicate portions of statements or
commands that must be entered, exactly as shown.

All other punctuation, such as commas, colons, slash marks,
and equal signs, must be entered exactly as shown.

INTRODUCTION Page 1-4

1. 5 OVERVIEW

The Utility Software Package is an assembly language
programming system that parallels the design and programming
power of assemblers and related software on big computers.
Consequently, the design and use of the Utility Software
Package involves traits and methods that may be new to you.
As explained earlier, we assume that you have some
experience in assembly language programming. Your knowledge
of when and why to use particular operation codes and
pseudo-operations is the base on which you can build your
knowledge of the Utility Software Package.

One word of caution: some terms used in this manual may be
familiar to you from other sources. Be sure to notice
especially how familiar terms are used in the utility
Software Package so that you are not confused or misled.

The Utility Software Package programming relies on two
important software programs -- an assembler and a linking
loader. To develop an assembly language program that runs
on your computer, you must use both the assembler and the
linking loader. The whole process is diagrammed on the
facing page. The numbers on the diagram correspond to the
numbers in the explanations below.

1. You create an assembly language source program using
some editor.

2. You assemble your source program using the MACRO-80
macro assembler. The result is a file that contains
intermediate object code. This intermediate code is closer
to machine code than your source code, but cannot be
executed.

3. You link and load separately assembled file{s) into a
single program file using the LINK-80 linking loader.
LINK-SO converts the file{s) of intermediate code into a
single file of true machine code which can be executed from
the operating system.

These are only
step process
program allows
time and to
following ways:

the basics of the whole process. This two
of converting a source file to an executable
you to manipulate your programs to save you

extend your programs' usefulness in the

INTRODUCTION Page 1-5

1. EDITOR

1
source file

1
2.

MACRO-~'H>

1

1
3. LINK-HO

1
executable file

Figure 1.1: Developing Assembly Language Programs

INTRODUCTION Page 1-6

First, you can break your program in convenient parts called
modules. You can manipulate these modules at will. You can
assemble the modules individually. You fix only those that
do not work right and reassemble them. This saves you time.

Second, you can manipulate the placement
memory, subject to certain restrictions;
to place modules for you. (This trait is
under the fourth trait.)

of modules in
or allow LINK-SO
described below

Third, you can use assembled modules in other programs or in
variations of the original program because there is no
permanent connection among the modules. This saves you
recoding time if a part of a program performs some useful,
often-repeated task.

Whenever you want to combin.e assembled modules into an
executable program, you use the LINK-SO linking loader. If
you simply tell LINK-SO the modules you want combined, it
loads them end-to-end in memory. But you have an additional
choice. You can set up a direct connection between a
statement in one module and a statement inside another
module. This direct connection (or "link") means that a
value (usually a program address) in one module can be used
in another module exactly at the point required.

LINK-SO creates the links between modules. You give LINK-SO
the signals it needs to create these links. The signals are
called symbols, specifically EXTERNAL symbols and PUBLIC
symbols. An EXTERNAL symbol signals LINK-SO that you want
it to link a value from another module into this point in
the program. The value to be linked-in is defined by a
PUBLIC symbol, which is a signal that directs LINK-SO to the
correct· module and statement line. LINK-SO then links the
PUBLIC symbol's value to the EXTERNAL symbol, then continues
loading the module with the EXTERNAL symbol. The diagram
below suggests this process.

EXTERNAL

PUBLIC

;loading a module with
;an EXTERNAL symbol

;here LINK-SO looks for
;the PUBLIC symbol
;and links its value
;then LINK-80
;continues to load
;the module with an
;EXTERNAL symbol

Figure 1.2: PUBLIC symbol linked into module at EXTERNAL

INTRODUCTION Page 1-7

Fourth, modules can be assembled into different modes, even
within a single module. The four modes are Absolute,
Data-relative, Code-relative, and COMMON-relative. The
absolute mode is similar the code produced by most small
system assemblers. The code is assembled at fixed addresses
in memory. The other three modes are very different and are
the reason you can place modules anywhere in memory. Each
of the three relative modes assembles to a separate segment.
The addresses within each segment are relative addresses.
This means the first instruction byte of a segment is given
a relative address of 0, the second byte is given relative
address 1, and so on. When LINK-80 loads the module, it
changes the relative addresses in the segments to fixed
addresses in memory. The relative addresses are offsets
from some fixed address that LINK-SO uses. For the first
module loaded, this address is 103H under the CP/M operating
system. Thus, relative addresses in the first module are
offsets from l03H. The second module is loaded at the end
of the first, and the relative addresses are offsets from
the last address in the first module. Subsequent modules
are loaded (and offset) similarly. You can change the
default start address for the first module at link time.
Then, the relative addresses become offsets from the fixed
address you specify.

relative
address

o ----------------------
• MODI
• •
• •
• •

100 •

o MOD2
• •
• •
• •

250 •

• •
• •
•

fixed
address
103H

203H

istart address

:end MODI, begin MOD2
204H

454H
iend of M002

Figure 1.3: Loading Changes Relative Addresses to Fixed

One effect of this relative addressing method is that ORG
statements become very different creatures. For the
relative segments, the ORG statement specifies an offset
rather than a fixed address (as most assemblers do -- ORG
specifies a fixed address in the absolute segmen~). Thus, a
relative segment with an ORG statement would skip over a
specified number of addresses before beginning to load the
rest of the code in that segment.

INTRODUCTION

relative
address

o
•
•
•
•

100

o
50

•
•
•

MODl

MOD2
ORG50

•
•
•
•

•
•
•

fixed
address

Page 1-8

103H ;start address

203H

204H
254H

;end MODI, begin MOD2

;skips 50 addresses

300 • 504H
;end of MOD2

• •
• •
• •

You should read carefully the description of ORG found in
Chapter 4.

The ability to manipulate the placement of modules in
memory, with some restrictions (see Chapter 6), derives from
the assembler giving relative addresses instead of absolute
addresses. This ability to manipulate module placement in
memory is called relocatabilitYi the modules are
relocatable; the intermediate code produced by the
assembler for the three relative segments is called
relocatable code. That is why assembled modules are given
the filename extension .REL, and these assembled files are
called REL files.

Each mode serves a different purpose. The absolute mode
contains code you want placed in specific memory addresses.
Each relative mode is loaded into memory as a separate
segment. The data-relative segment contains data items and
any code that may change often and should only be placed in
RAM. The code-relative segment contains code that will not
change and therefore is suitable for ROM and PROM. The
COMMON-relative segment contains data items that can be
shared by more than one module.

Source statements in these modes take on the traits of their
mode. The symbols and expressions in statements are
evaluated by the assembler according to the mode in which
they are found and the type of data and other entries that
define the symbol or make up the parts of an expression.
The mode traits attributed to a symbol or expression are
called, appropriately, its Modei that is, a symbol or
expression is absolute, data-relative, code-relative, or
COMMON-relative. This concept of mode is important because
it is the source of both flexibility and complexity. If all

INTRODUCTION Page 1-9

source statements are assembled in absolute mode, symbols
and expressions always have absolute values, and using
absolute symbols and expressions is not complex. The
problem with absolute mode is that relocatability is
possible only through the most complex and time consuming of
techniques. Absolute mode effectively reduces your ability
to reuse code in a new program.

The relative modes (data, code, and COMMON) are the basis of
relocatability· and, therefore, of the flexibility to
manipulate modules. The complexity is that relative symbols
and relative expressions are much more difficult to
evaluate. In fact, the assembler must pass through the
source statements twice to assemble a module. During the
first pass, the assembler evaluates the statements and
expands macro call statemnts, calculates the amount of code
it will generate, and builds a symbol table where all
symbols and macros are assigned values. During the second
pass, the assembler fills in the symbol and expression
values from the symbol table, expands macro call statements,
and emits the intermediate code into a REL file.

When the REL files are given to LINK-SO, the segments are
linked together and loaded into fixed memory addresses. The
relative addresses are converted to absolute addresses. The
fixed addresses are assigned to the relative segments in the
order: COMMON-relative and data-relative, then
code-relative. The relative segments are loaded relative to
default address l03H under CP/M. (The addresses lOOH-I02H
are used for a jump to the start address of the first
program instruction, which is normally the first address
following the COMMON and data area.)

When LINK-SO is finished linking modules together and
assigning addresses, the result can be saved in a file that
is executable from the operating system. Executing the
program is then as simple as entering an operating system
command, so these linked and loaded files are called command
files.

This short overview should give you a general idea of the
workings and processes of the Utility Software Package.
Short descriptions of all the utility Software Package
programs are given in the next chapter. Detailed
descriptions are given in the rest of this manual.
Therefore, the information contained in this overview will
be repeated in fuller detail elsewhere in this manual.

As an aid to the description in the next chapter and the
rest of this manual, the next page contains an expanded
version of the diagram at the beginning of this overview.
The expanded diagram shows the relationships among all the
programs in the Utility Software Package.

INTRODUCTION

CP/M
Editor

8
~

listing file

@-----..[:]
10

..........
10

EJ
Figure 1.5: Relationships among programs

Page 1-10

Chapter 2

2.1
2.2
2.3
2.4
2.5

Contents

Features of the Utility Software Package

Two Assembly Languages 2-2
Relocatability 2-2
Macro Facility 2-2
Conditional Assembly 2-3
utility Programs 2-3

LINK-80 Linking Loader
CREF-80 Cross Reference
LIB-80 Library Manager

2-3
Facility

2-4
2-4

CHAPTER 2

FEATURES OF THE UTILITY SOFTWARE PACKAGE

The Utility Software Package is an Assembly Language
Development System that assembles relocatable code from two
assembly languages, supports a macro facility and
conditional assembly, and provides several utility programs
that enhance program development.

WHAT IS AN UTILITY SOFTWARE PACKAGE?

An Utility software package is more than an assembler. An
Utility Software Package is a series of related utility
programming tools:

for assembling an assembly language source file,

for linking several assembled modules into one
program,

for creating library files of subroutines (also
assembled modules),

for creating cross-reference listings of program
symbols,

for testing and debugging
executable) program files,

binary (machine

Microsoft's Utility Software Package provides versions of
these tools that make the Utility Software Package extremely
powerful and useful as a program development system. Each
tool in the Utility Software Package is described in detail
in its own chapter.

FEATURES OF THE UTILITY SOFTWARE PACKAGE Page 2-2

2.1 ~10 ASSEMBLY LANGUAGES

The assembler in your Utility Software Package supports two
assembly languages. Microsoft's MACRO-80 macro assembler
supports both 8080 and Z80 mnemonics.

2.2 RELOCATABILITY

MACRO-80 can produce modules of relocatable code. Also,
like many assemblers, the MACRO-80 assembler can produce
absolute code. The key advantage of relocatability is that
programs can be assembled in modules. Then, within certain
restrictions described in Chapter 6, the modules can then be
located almost anywhere in memory.

Relocatable modules also offer the advantages of easier
coding and faster testing, debugging, and modifying. In
addition, it is possible to specify segments of assembled
code that will later be loaded into RAM or into ROM/PROM.

Relocatability will be discussed further under Section 3.2,
Symbols.

2.3 MACRO FACILITY

The MACRO-80 assembler supports a complete, Intel standard
macro facility. The macro facility allows a programmer to
write blocks of code for a set of instructions used
frequently. The need for recoding these instructions is
eliminated.

The programmer gives this block of code a name, called a
macro. The instructions are the macro definition. Each
time the set of instructions is needed, instead of recoding
the set of instructions, the programmer simply "calls" the
macro. MACRO-80 expands the macro call by assembling the
block of instructions into the program automatically. The
macro call also passes parameters to the assembler for use
during macro expansion. The use of macros reduces the size
of a source module because the macro definitions are stored
in disk files and come into the module only when needed
during assembly.

Macros can be nested, that is, a macro can be called from
inside another macro. Nesting of macros is limited only by
memory.

FEATURES OF THE UTILITY SOFTWARE PACKAGE Page 2-3

2.4 CONDITIONAL ASSEMBLY

MACRO-SO also supports conditional assembly. The programmer
can determine a condition under which portions of the
program are either assembled or not assembled. Conditional
assembly capability is enhanced by a complete set of
conditional pseudo operations that include testing of
assembly pass, symbol definition, and parameters to macros.
Conditionals may be nested up to 255 levels.

2.5 UTILITY PROGRAMS

Three utility programs provide the additional support needed
to develop powerful and useful assembly language programs:
LINK-SO Linking Loader, LIB-SO Library Manager, and CREF-SO
Cross Reference Facility.

LINK-SO Linking Loader

The Microsoft LINK-SO Linking Loader is used to convert the
assembled module (.REL file) into an executable module (.COM
file). The .REL file is not an executable file.

LINK-SO can also be used to:

load, link, and.run one or more modules

load relocatable
locations

programs at user-specified

load program areas and data areas into separate
memory locations

While performing these tasks, LINK-SO resolves external
references between modules (that is, any program that calls
an external value, something defined in a different program
or module, will have the outside references filled at link
time by LINK-SO), and saves the executable object (.COM)
file on disk, so it can be run from the operating system.

These load capabilities mean that the assembled program may
be linked with the user's library to add routines to one of
the high-level langauge runtime libraries. Assembled
programs can be linked to high-level language programs
COBOL-SO and FORTRAN-SO, for example as well as to
MACRO-SO programs.

FEATURES OF THE UTILITY SOFTWARE PACKAGE Page 2-4

CREF-80 Cross Reference Facility

The CREF-80 Cross Reference Facility processes a cross
reference file generated by MACRO-80. The result is a cross
reference listing that can aid in the debugging of your
program.

LIB-SO Library Manager (CP/M versions only)

LIB-SO is designed as a runtime library manager for CP/M
versions of the Utility Software Package. LIB-SO may also
be used to create your own library of assembly language
subroutines.

LIB-SO creates runtime libraries from assembly language
programs that are subroutines to COBOL, FORTRAN, and other
assembly language programs. The programs collected by
LIB-SO may be special modules created by the programmer or
modules from an existing library. With LIB-SO, you can
create specialized runtime libraries for whatever execution
requirements you design.

Chapter 3

3.1

3.2

3.3
3.4
3.4.1

3.4.2

Contents

Programming with the Utility Software Package

Source File Organization 3-1
File Organization 3-1
Statement Line Format 3-1
Comments 3-2

Symbols 3-3
LABEL: 3-4
PUBLIC 3-5
EXTERNAL 3-6
Modes 3-7

Opcodes and Pseudo-ops 3-9
Arguments: Expressions 3-10

Operands 3-10
Numbers 3-10
ASCII Strings 3-11
Character Constants 3-11
Symbols in Expressions 3-12
Current Program Counter Symbol
8080 Opcodes as Operands 3-13

Operators 3-14

3-13

CHAPTER 3

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE

This chapter describes what the user needs to know to create
MACRO-SO macro assembler source files. Source files are
created using a text editor, such as CP/M ED. The Utility
Software Package does not include a text editor program.

Source files are assembled using the procedures described in
Chapter 4.

3.1 SOURCE FILE ORGANIZATION

File Organization

A MACRO-SO macro assembler source file
written in assembly language. The
must be an END statement. Matching
IF ••• ENDIF) must be entered in
Otherwise, lines may appear in any
designs.

Statement Line Format

is a series of lines
last line of the file
statements (such as

the proper sequence.
order the programmer

Source files input to the MACRO-SO macro assembler consist
of statement lines divided into parts or "fields."

BUF:

i
SYMBOL

OS

OPE~TION
lOOOH

r
;create a buffer r

ARGUMENT COMMENT

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-2

SYMBOL field contains one of the three types of symbol
(LABEL, PUBLIC, and EXTERNAL), followed by a colon
unless it is part of a SET, EQU, or MACRO
statement.

OPERATION field contains an OPCODE, a PSEUDO-OP, a MACRO
name, or an expression.

ARGUMENT field contains expressions (specific values,
variables, register names, operands and operators).

~COMMENT field contains comment text always preceded by a
semicolon.

All fields are optional. You may enter a completely blank
line.

Statement lines may begin in any column. Multiple blanks or
tabs may be inserted between fields to improve readability,
but at least one space or tab is required between each
field.

Comments

A MACRO-SO macro assembler source line is basically an
Operation and its Argument. Therefore, the MACRO-SO macro
assembler requires that a COMMENT always begin with a
semicolon. A COMMENT ends with a carriage return.

For long comments, you may want to use the . COMMENT
pseudo-op to avoid entering a semicolon for every line. See
the File Related Pseudo-ops section of Chapter 4 for the
description of • COMMENT.

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-3

3.2 SYMBOLS

Symbols are simply names for particular functions or values.
Symbol names are created and defined by the programmer.

Symbols in the Utility Software Package belong to one of
three types, according to their function. The three types
are LABEL, PUBLIC, and EXTERNAL. All three types of symbols
have a MODE attribute that corresponds to the segment of
memory the symbol represents. Refer to the section on modes
following the description of symbol types.

All three types
characteristics:

of symbols have the following

1. Symbols may be any length, but the number of
significant characters passed to the linker varies
with the type of symbol:

a. for LABELs, only the first sixteen characters
are significant.

b. for PUBLIC and EXTERNAL symbols, only the first
six characters are passed to the linker.

Additional characters are truncated internally.

2. A legal symbol name may contain the characters:

A-Z 0-9 $? @

3. A symbol may not start with a digit or an underline

4. When a symbol is read, lower case is translated
into upper case, so you may enter the name using
either case or both.

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-4

LABEL:

A LABEL: is a reference point for statements inside the
program module where the label appears. A LABEL: sets the
value of the symbol LABEL to the address of the data that
follows. For example, in the statement:

BUF: DS lOOOH

BUF: equals the first address of the lOOOH byte ~eserved
space.

Once a label is defined, the label can be used as an entry
in the ARGUMENT field. A statement with a label in its
argument loops to the statement line with that label in its
SYMBOL field, which is where the label is defined. The
label's definition replaces the label used in an ARGUMENT
field. For example,

STA BUF

sends the value in the accumulator to the area in memory
represented by the label BUF.

A LABEL may be any legal symbol name, up to 16 characters
long.

If you want to define a LABEL, it must be the first item in
the statement line. 8080 and Z80 labels must be followed
immediately by a single colon (no space), unless the LABEL
is part of a SET or EQU statement. (If two colons are
entered, the "label" becomes a PUBLIC symbol. See PUBLIC
Symbols below.)

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-5

PUBLIC

A PUBLIC symbol is defined
difference is that a PUBLIC
reference point for statements
too.

A symbol is declared PUBLIC by:

much like a LABEL. The
symbol is available as a

in other program modules,

two colons (::) following the name. For example,

Foa: : RET

one of the pseduo-ops PUBLIC, ENTRY, or GLOBAL.
For example,

PUBLIC FOa

See the Data Definition and Symbol Definition
Pseudo-ops section in Chapter 4 for descriptions of
how to use these pseudo-ops.

The result of both methods of declaration is the same.
Therefore,

FOO: : RET

is equivalent to

PUBLIC FOO
FOa: RET

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-6

EXTERNAL

An EXTERNAL symbol is defined outside the program module
where it appears. An EXTERNAL symbol is defined as a PUBLIC
symbol in another, separate program module. At link time
(when the LINK-SO Linking Loader is used), the EXTERNAL
symbol is given the value of the PUBLIC symbol in the other
program module. For example:

MODI

Faa: : DB 7 :PUBLIC FOO = 7

MOD2

BYTE EXT FOO :EXTERNAL FOO

At link time, LINK-SO goes to the address of PUBLIC
FOO and uses the value there (7) for EXTERNAL FOO.

A symbol is declared EXTERNAL by:

1. two pound signs (ii) following a reference to a
symbol name. For example:

CALL FOCtt

declares Faa as a tWO-byte symbol defined in
another program module.

2. one of the pseudo-ops EXT, EXTRN, or EXTERNAL for
two-byte values. For example:

3.

EXT FOC

declares FOO as a two-byte value defined in another
program module.

one of the pseudo-ops BYTE EXT, BYTE EXTERN,
BYTE EXTERNAL for one-byte values. For example:

BYTE EXT FOO

or

declares FOO as a one-byte value defined in another
program module.

See the Symbol
Chapter 4 for
pseudo-ops.

Definition Pseudo-ops section in
descriptions of how to use these

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-7

As for PUBLIC symbols,
declaration is the same.

the result of both methods of
Therefore,

CALL FOO##

is equivalent to

MODES

EXT FOO
CALL FOO

A symbol is referenced by entering its name in the ARGUMENT
field of a statement line. When a symbol is referenced, the
value of the symbol (derived from the instruction which
defines the symbol) is substituted for the symbol name and
used in the operation.

The value of a symbol is evaluated according to its program
counter (PC) mode. The PC mode determines whether a section
of a program will be loaded into memory at addresses
predetermined by the programmer (absolute mode), or at
relative addresses that change depending on the size and
number of programs (code relative mode) and amount of data
(data relative mode), or at addresses shared with another
program module (COMMON mode). The default mode is Code
Relative.

Absolute Mode: Absolute mode assembles non-relocatable
code. A programmer selects Absolute mode when a block of
program code is to be loaded each time into specific
addresses, regardless of what else is loaded concurrently.

Data Relative Mode: Data Rel-ative mode assembles code for a
section of a program that may change and therefore must be
loaded into RAM. This applies to program data areas
especially. Symbols in Data Relative Mode are relocatable.

Code Relative Mode: Code (program) Relative mode assembles
code for sections of programs that will not be changed and
therefore can be loaded into ROM/PROM. Symbols in Code
Relative Mode are relocatable.

COMMON Mode: COMMON mode assembles code that is loaded into
a defined common data area. This allows program modules to
share a block of memory and common values.

To change mode, use a PC mode pseudo-op in a statement line.
The PC mode pseudo-ops are:

ASEG
DSEG
-CSEG
COMMON

Absolute mode
Data Relative mode
Code Relative mode--default mode
COMMON mode

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-8

These pseudo-ops are described in detail in the PC Mode
Pseudo-ops section of Chapter 4.

This PC mode capability in the MACRO-80 macro assembler
allows a programmer to develop assembly language programs
that can be relocated. Many assembly language programmers
may have learned always to set an Origin statement at the
beginning of every module, subroutine, or main assembly
language program. Under MACRO-80 this mode of addressing is
called Absolute mode because hard (or actual addresses) are
specified beginning, especially, with the Origin statement.

MACRO-80 has two other, "relative" modes of addressing
available, called Code (Program) relative and Data relative.
Segments of code written in these two modes are relocatable.
Relocatable means the program module can be loaded starting
at any address in available memory, using the /P and /D
switches (special commands) in LINK-80.

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-9-

3.3 OPCODES AND PSEUDO-OPS

Opcodes are the mnemonic names for the machine instructions.
Pseudo-ops are directions to the assembler, not the
microprocessor.

MACRO-SO supports two instruction sets: SOSO and ZSO. A
list of the opcodes with brief summaries of their functions
is included as Appendix F. To program with the opcodes of
the different languages, the user must first enter the
pseudo-op which tells the assembler which language is being
coded. Refer to the Language Set Selection Pseudo-ops
section of Chapter 4 for details.

MACRO-SO also supports a large variety of pseudo-ops that
direct the assembler to perform many different functions.
The pseudo-ops are described extensively in Chapter 4 and
are summarized in Appendix E.

Opcodes and pseudo-ops are (usually) entered in the
OPERATION field of a statement line. (A program statement
line usually has an entry in the operation field, unless the
line is a Comment line only. The Operation field will be
the first field filled if no label is entered.) An
Operation may be any SO SO or ZSO mnemonic; or a MACRO-SO
macro assembler pseudo-op, macro call, or expression.

The OPERATION field entries are evaluated in the following
order:

1. Macro call

2. Opcode/Pseudo-op

3. Expressions

MACRO-SO compares the entry in the OPERATION filed to an
internal list of macro names. If the entry is found, the
macro is expanded. If the entry is not a macro, MACRO-SO
tries to evaluate the entry as an opcode. If the entry is
not an opcode, MACRO-SO tries to evaluate the entry as a
pseudo-oPe If the entry is not a pseudo-op, MACRO-SO
evaluates the entry as an expression. If an expression is
entered as a statement line without an opcode, pseudo-op, or
macro name in front of it, the MACRO-SO macro assembler does
not return an error. Rather, the assembler assumes that a
define byte pseudo-op belongs in front of the expression and
assembles the line.

Because of the order of evaluation, a macro name that is the
same as an opcode prevents you from using the opcode again,
except as a macro call. For example, if you give a block of
macro code the name ADD in your program, you cannot use ADD
as an opcode in that program.

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-10

3.4 ARGUMENTS: EXPRESSIONS

Arguments for the opcodes and pseudo-ops are usually called
expressions because they resemble mathematical expressions,
such as 5+4*3. The parts of an expression are called
operands (5, 4, and 3 in the mathematical expression) and
operators {the + and * are examples}. Expressions may
contain one operand or more than one. One operand
expressions are probably the form most commonly used as
arguments. If the expression contains more than one
operand, the operands are related to each· other by an
operator. For example:

5+4 6-3 7*2 8/7 9>S

and so on. In MACRO-SO, operands are numeric values
represented by numbers, characters, symbols, or 80S0
opcodes. Operators may be arithmetic or logical.

You are probably familiar with the various forms of
expressions that can be used as arguments, but you may want
to review the details given below for characteristics unique
to MACRO-SO.

The following sections define the forms of operands and
operators MACRO-SO supports.

3.4.1 Operands

Operands may be numbers, characters, symbols, or 80S0
opcodes.

Numbers

The default base for numbers is decimal. The base may be
changed by the .RADIX pseudo-oPe Any base from 2 {binary}
to 16 (hexadecimal) may be selected. When the radix is
greater than 10, A-F are used for the digits following 9.
If the first digit of a number is not numeric, the number
must be preceded by a zero.

A number is always evaluated in the current radix unless one
of the following special notations is used:

nnnnB
nnnnD
nnnnO
nnnnH
X'nnnn'

Binary
Decimal
Octal
Hexadecimal
Hexadecimal

Numbers are l6-bit unsigned binary quantities. Overflow of
a number beyond two bytes (16 bits that is, 65535
decimal) is ignored, and the result is the low order 16
bits.

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-11

ASCII Strings

A string is composed of zero or more characters delimited by
quotation marks. Either single (') or double (") quotation
marks may be used as string delimiters. When a quoted
string is entered as an argument, the values of the
characters are stored in memory one after the other. For
example:

DB "ABC"

stores the ASCII value of A at the first address, B at the
second address, and C at the third.

The delimiter quotes may be used as characters if
appear twice for every character occurrence desired.
example, the statement

"I am • .. ·great· .. • today"

stores the string

I am "great" today

they
For

If no characters are placed between the quotation marks, the
string is evaluated as a null string.

Character Constants

Like strings, character constants are composed of zero, one,
or two ASCII characters, delimited by quotation marks.
Either single or double quotation marks may be used as
delimiters. The delimiter quotes may be used as characters
if they appear twice for every character occurrence desired.

The differences are:

1. A character constant is only zero, one, or two
characters.

2. Quoted characters are a character constant only if
the expression has more than one operand. If the
characters are entered as the only operand, they
are,eva1uated and stored as a string. For example:

'A'+l is a character constant, but

'A' is a string.

3. The value of a character constant is calculated,
and the result is stored with the" low-byte in the
first address and the high-byte in the second. For
example:

PROG~~ING WITH THE UTILITY SOFTWARE PACKAGE Page 3-12

3. The value of a character constant is calculated,
and the result is stored with the low-byte in the
first address and the high-byte in the second. For
example:

DW 'AB' +0

evaluates to 4l42H and stores 42 in the first
address and 41 in the second.

A character constant comprised of one character has
value the ASCII value of that character. That is,
order byte of the value is zero, and the low order
the ASCII value of the character. For example, the
the constant 'A' is 4lH.

as its
the high
byte is
value of

A character constant comprised of two characters has as its
value the ASCII value of the first character in the high
order byte and the ASCII value of the second character in
the low order byte. For example, the value of the character·
constant 'AB'+O is 4lH*256+42H+O.

The ASCII decimal and hexadecimal values for characters are
listed in Appendix C.

svrnbols in Expressions

A symbol may be used as an operand in an expression. The
symbol is evaluated, and the value is substituted for the
symbol. The Operation is performed using the symbol's
value.

The benefit of using symbols as operands is that the
programmer need not remember the exact value each time it is
needed; rather, the symbol name can be used. The name is
usually easier to remember, especially if the symbol name is
made mnemonic. The use of symbols as operands becomes more
attractive, of course, as the number of symbols in a program
increases.

Rules Governing the Use of EXTERNALS in expressions:

1. EXTERNAL symbols may be used in expressions with
the following operators only:

+ * / MOD HIGH LOW

2. If an EXTERNAL symbol is used in an expression, the
result of the expression is always external.

MODE Rules affecting SYMBOLS in expressions:

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-13

1. In any operation, except AND, OR, or XOR, the
operands. may be any mode.

2. For AND, OR, XOR, SHL, and SHR, both operands must
be absolute and internal.

3. When an expression contains an Absolute operand and
an operand in another mode, the result of the
expression will be in the other (not Absolute)
mode.

4. When subtracting two operands in different modes,
the result will be in Absolute mode. Otherwise,
the result will be in the mode of the operands.

5. When adding a data relative symbol and a code
relative symbol, the result will be unknown, and
MACRO-80 passes the expression to LINK-80 as an
unknown, which LINK-80 resolves.

Current Program Counter Symbol

One additional symbol for the Argument field only must be
noted: the current program counter symbol. The current
program counter is the address of the next instruction to be
assembled. The current program counter is often a
convenient reference point for calculating new addresses.
Instead of remembering or calculating the current program
address, the programmer uses a symbol that tells the
assembler to use the value of the current program address.

The current program counter symbol is $.

8080 Opcodes ~ Operands

8080 opcodes are valid one-byte operands in 8080 mode only.
During assembly, the opcode is evaluated~o its hexadecimal
value.

To use 8080 opcodes as operands, first set the .8080
pseudo-oPe See the Language Set Selection Pseudo-ops
section of Chapter 4 for a description of how to use the
.8080 pseudo-oPe

Only the first byte is a valid operand. Use parentheses to
direct the assembler to generate one byte for opcodes that
normally generate more than one. For example:

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-14

MVI A, (JMP)
ADI (CPI)
MVI B, (RNZ)
CPI (INX H)
ACI (LXI B)
MVI C,MOV A,B

The assembler returns an error if more than one byte is
included in the operand (inside the parentheses) -- such as
(CPI 5), (LXI B,LABELl) , or (JMP LABEL2).

Opcodes that generate one byte normally may be used as
operands without being enclosed in parentheses.

3.4.2 Operators

MACRO-BO allows both arithmetic and logical operators.
Operators which return true or false conditions return true
if the result is any non-zero value and false if the result
is zero.

The following arithmetic and logical operators are allowed
in expressions.

Operator

NUL

TYPE

Definition

Returns true if the argument (a parameter) is
null. The remainder of the line after NUL is
taken as the argument to NUL. The
conditional

IF NUL <argument>

is false if the first character of the
argument is anything other than a semicolon
or carriage return. Note that IFB and IFNB
perform the same functions but are simpler to
use. (Refer to the Conditional Assembly
Facility section in Chapter 4.)

The TYPE operator returns a byte that
describes two characteristics of its
argument: 1) the mode, and 2) whether it is
External or not. The argument to TYPE may be
any expression (string, numeric, logical).
If the expression is invalid, TYPE returns
zero.

The byte that is returned is configured as

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-15

LOW

HIGH

*
/

MOD

follows:

The lower two bi ts are the mode. If the
lower two bits are:

a the mode is Absolute
1 the mode is Program Relative
2 the mode is Data Relative
3 the mode is Common Relative

The high bit (SOH) is the External bit. If
the high bit is on, the expression contains
an External. If the high bit is off, the
expression is local (not External).

The Defined bit is 20H. This bit is on if
the expression is locally defined, and it is
off if the expression is undefined or
external. If neither bit is on, the
expression is invalid.

TYPE is usually used inside macros, where an
argument type may need to be tested to make a
decision regarding program flow: for
example, when conditional assembly is
involved.

EXAMPLE:

FOO MACRO X
LOCAL Z

Z SET TYPE X
IF Z •••

TYPE tests the mode and type of X. Depending
on the evaluation of X, the block of code
beginning with IF Z ••• may be assembled or
omitted.

Isolates the low order 8 bits of an absolute
16-bit value.

Isolates the high order 8 bits of an absolute
16-bit value.

Multiply

Divide

Modulo. Divide the left operand by the right
operand and return the value of the remainder
(modulo) •

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-16

SHR

SHL

Shift Right. SHR is followed by an integer
which specifies the number of bit positions
the value is to be right shifted.

Shift Left. SHL is followed by an integer
which specifies the number of bit positions
the value is to be left shifted.

- {Unary Minus) Indicates that following value is negative,
as in a negative integer.

+

EQ

NE

LT

LE

GT

GE

NOT

AND

OR

Add

Subtract the right operand from the left
operand.

Equal. Returns true if the operands equal
each other.

Not Equal. Returns true if. the operands are
not equal to each other.

Less Than. Returns true if the left operand
is less than the right operand.

Less than or Equal. Returns true if the left
operand is less than or equal to the right
operand.

Greater Than. Returns true if the left
operand is greater than the right operand.

Greater than or Equal. Returns true if the
left operand is greater than or equal to the
right operand.

Logical NOT. Returns true if left operand is
true and right is false or if right is true
and left is false. Returns false if both are
true or both are false.

Logical AND. Returns true if both operators
are true. Returns false if either operator
is false or if both are false. Both operands
must be absolute values.

Logical OR. Returns true if either operator
is true or if both are true. Returns false
if both operators are false. Both operands
must be absolute values.

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-17

XOR Exclusive OR. Returns true if either
operator is true and the other is false.
Returns false if both operators are true or
if both operators are false. Both operands
must be absolute values.

The order of precedence for the operators is:

NUL, TYPE

LOW, HIGH

*, /, MOD, SHR, SHL

Unary Minus

+, -

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

Subexpressions involving operators of higher precedence than
an expression are computed first. The order of precedence
may be altered by using parentheses around portions of an
expression you wish to give higher precedence.

All operators except +, -, *, and / must be separated from
their operands by at least one space.

The byte isolation operators (HIGH and LOW) isolate the
high- or low-order 8 bits of a l6-bit value.

contents

CHAPTER 4 Assembler Features

4.1 Single-Function Pseudo-ops 4-1
Instruction Set Selection 4-2
Data Definition and Symbol Definition 4-4
PC Mode 4-13
File Related 4-20
Listing 4-27

Format Control 4-28
General Listing Control 4-31
Conditional Listing Control 4-33
Macro Expansion Listing Control 4-34
CREF Listing Control 4-35

4.2 Macro Facility 4-36
Macro Definition 4-37

Calling a Macro 4-38
Repeat Pseudo-ops 4-40
Termination 4-44
Macro Symbol 4-45
Special Macro Operators 4-46

4.3 Conditional Assembly Facility 4-48

CHAPTER 4

ASSEMBLER FEATURES

The MACRO-80 macro assembler features three general
facilities: single-function pseudo-ops, a macro facility,
and a conditional assembly facility.

4.1 SINGLE-FUNCTION PSEUDO-OPS

Single-function pseudo-ops involve only their own statement
line and-direct ---the assembler to -pe-r-form- only one ---f-unction.
(Macros and conditionals involve more than one line of code,
so they may be thought of as block pseudo-ops.)

The Single-Function Pseudo-ops are divided into five types:
Instruction Set Selection, Data Definition and Symbol
Definition, PC Mode, File Related, and Listing Control.

ASSEMBLER FEATURES Page 4-2

INSTRUCTION SET SELECTION

The default instruction set mode is 8080. If the correct
instruction set selection pseudo-op is not given, the
assembler will return fatal errors for opcodes that are not
valid for the current instruction set selection mode. That
is, .Z80 assembles Z80 opcodes only~ .8080 assembles 8080
opcodes only. Therefo~e, if you have written any assembly
language programs for Z80, you need to insert the .Z80
instruction set pseudo-op at the beginning of the program
file.

Note that all the pseudo-ops listed in this chapter will
assemble in both instruction set modes.

ASSEMBLER FEATURES Page 4-3

.Z80

• 8080

.Z80 takes no arguments. .Z80 directs MACRO-80 to
assemble zao opcodes •

.8080 takes no arguments.
to assemble 8080 opcodes.

.80ao directs MACRo-a 0
(default)

All opcodes entered following an Instruction Set
Selection pseudo-op will be assembled as that type
of code until a different Instruction Set Selection
pseudo-op is encountered.

If you enter an opcode not belonging to the
selected instruction set, MACRO-aO will return an

.Objectionable Syntax error (letter O).

ASSEMBLER FEATURES Page 4-4

DATA DEFINITION AND SYMBOL DEFINITION

All of the data definition and symbol definition pseudo-ops
are supported in both instruction set modes. (The one
notable exception is SET, which is illegal in .Z80 mode.
For your information, The following notation has been placed
before the pseudo-op syntax to indicate which microprocessor
the pseudo-op is usually associated with:

* indicates a Z80 pseudo-op

No asterisk indicates an Intel 8080 pseudo-op

ASSEMBLER FEATURES Page 4-5

Define ~

DB <exp>[,<exp> •••]
* DEFB <exp>[,<exp> •••]

DB <string>[<string> •••]
* DEFM <string>[,<string> •••]

The arguments to DB are either expressions or
strings. The arguments to DEFB are expressions.
The arguments to DEFM are strings. Strings must be
enclosed in quotes, either single or double.

NOTE: DB is
explanation
pseudo-ops.

used throughout
to represent all

the following
the Define Byte

DB is used to store a value (string or numeric) in
a memory location, beginning with the current
location counter.

Expressions must evaluate to one byte. (If the
high· byte of the result is 0 or 255, no error is
given; otherwise, an A error results.)

Strings of three or more characters may not be used
in expressions (i.e., they must be immediately
followed by a comma or the end of the line). The
characters in a 8080 or zao string are stored in
Ene-order ofappe-arance, each as' a one-byte--value
with the high order bit set to zero.

EXAMPLE:

DB 'AB'
DB 'AB' AND OFFH
DB 'ABC'

assembles as:

0000' 41 42 DB 'AB'
0002' 42 DB 'AB' AND OFFH
0003' 41 42 43 DB 'ABC'

ASSEMBLER FEATURES Page 4-6

Define Character

DC <string>

DC stores the characters in <string> in successive
memory locations beginning with the current
location counter. As with DB, characters are
stored in order of appearance, each as a one-byte
value with the high order bit set to zero.
However, DC stores the last character of the string
with the high order bit set to one. An error will
result if the argument to DC is a null string.

EXAMPLE:

FOC: DC "ABC"

assembles to:

0000' 41 42 C3 FOC: DC . "ABC"

ASSEMBLER FEATURES Page 4-7

Define Space

*
DS <exp>[,<val>]
DEFS <exp>[,<val>]

The define space pseudo-ops reserve an area of
memory. The value of <exp> gives the number of
bytes to be reserved.

To initialize the reserved space, set <val> to the
value desired. If <val> is nul (that is, omitted),
the reserved space is left as is (uninitialized);
the reserved block of memory is not automatically
initialized to zeros. As an alternative to setting
<val> to zero, when you want the define space block
initialized to zeros, you may use the 1M switch at
assembly time. See the Switches section in Chapter
5, Running MACRO-80, for a description of the 1M
switch.

All names used in <exp> must be previously defined
(i.e., all names known at that point on pass 1).
Otherwise, a V error is generated during pass 1,
and a U error may be generated during pass 2. If a
U error is not generated during pass 2, a phase
error will probably be generated because the define
space pseudo-op generated no code on pass 1.

EXAMPLE:

DS lOOH

reserves IOOH bytes of memory, uninitialized
(whatever values were in those bytes before the
program was loaded will still be there). Use the
1M switch at assembly time to initialized the IOOH
bytes to zero, if you want. Or, use the following
statement to initialize a reserved space to zero or
any other value:

OS lOOH,2

reserves lOOH bytes, each initialized to a value of
2.

ASSEMBLER FEATURES Page 4-8

Define Word

OW <exp>[,<exp> .••]
* DEFW <exp>[,<exp> •.•]

The define word pseudo-ops store the values of the
expressions in successive memory locations
beginning with the current location counter.
Expressions are evaluated as 2-byte (word) values.
Values are stored low-order byte first, then
high-order byte.

Contrast with ODB.

EXAMPLE:

FOO: ow 1234H

assembles as:

0000' 1234 FOO: ow l234H

Note: The bytes are shown on the listing in the
order entered, not the order stored.

ASSEMBLER FEATURES Page 4-9

Equate

<name> EQU <exp>

EQU assigns the value of <exp> to <name>. The
<name> may be a label, a symbol, or a variable, and
may be used subsequently in expressions. <name>
may not be followed by colon(s) •

If <exp> is External, an error is generated. If
<name> already has a value other than <exp>, an M
error is generated.

If you will want to redefine <name> later in the
program, use the SET or ASET pseudo-op to define
<name> instead of EQU.

Contrast with SET.

EXAMPLE:

BUF EQU OF3H

ASSEMBLER FEATURES

External Symbol

EXT <name>[,<name> •••]
EXTRN <name>[,<narne> ••.]

* EXTERNAL <name>[,<name> •••]
BYTE EXT <symbol>
BYTE EXTRN <symbol>
BYTE EXTERNAL <symbol>

Page 4-10

The External symbol pseudo-ops declare that the
name(s) in the list are External (i.e., defined in
a different module). If any item in the list
refers to a name that is defined in the current
proqrarn, an M error results. A reference to a name
where the name is followed immediately be two pound
signs (e.g., NAME##) also declares the name as
External.

Externals may evaluate to either one or two bytes.
For all External symbol names, only the first 6
characters are passed to the linker. Additional
characters are truncated internally.

EXAMPLE:

EXTRN ITRAN itranf init rtn

MACRO-BO will generate no code for this statement
when this module is assembled. When ITRAN is used
as an argument to a CALL statement, the CALL ITRAN
statement generates the code for CALL but a zero
value (0000*) for ITRAN. At link time, LINK-80
will search all modules loaded for a PUBLIC ITRAN
statement and use the definition of ITRAN found in
that module to define ITRAN in the CALL ITRAN
statement.

ASSEMBLER FEATURES

Public Symbol

ENTRY <name>[,<name> •••]
GLOBAL <name>[,<name> •••]
PUBLIC <name>[,<name> •••]

Page 4-11

The Public symbol pseudo-ops declare each name in
the list as internal and therefore available for
use by this program and other programs to be loaded
concurrently and linked with LINK-SO. All of the
names in the list must be defined in the current
program, or a U error results. An M error is
generated if the name is an External name or common
block name.

Only the first 6 characters of a Public symbol name
are passed to the linker. Additional characters
are truncated internally.

EXAMPLE:

PUBLIC ITRAN itranf init rtn

ITRAN: LD HL,PASSA istore addr of
ireg pass area

MACRO-SO assembles the LD statement as usuall but
generates no code for the PUBLIC ITRAN statement.
When LINK-SO sees EXTRN ITRAN in another module, it
knows to search until it sees this PUBLIC ITRAN
statement. Then, LINK-80 links the value of ITRAN:
LD HL,PASSA statement to the CALL ITRAN statement
in the other module(s).

ASSEMBLER FEATURES Page 4-12

Set

*
<name> SET <exp>
<name> DEFL <exp>
<name> ASET <exp>

(Not in .Z8Q mode)

The Set pseudo-ops assign the value of <exp> to
<name>. The <name> may be a label, a symbol, or a
variable, and may be used subsequently in
expressions. <name> may not be followed by
colon(s). If <exp> is External, an error is
generated.

The SET pseudo-op may not be used in .Z80 mode
because SET is a Z80 opcode. Both ASET and DEFL
may be used in both instruction set modes.

Use one of the SET pseudo-ops instead of EQU to
define and redefine <name>s you may want to
redefine later. <name> may be redefined with any
of the Set pseudo-ops, regardless of which
pseudo-op was used to define <name> originally (the
prohibition against SET in .Z80 mode still applies,
however).

Contrast with EQU.

EXAMPLE:

FOQ ASET BAZ+lOOOH

Whenever FDa is used as an expression (operand),
the ALDS assembler will evaluate BAZ+IOOOH and
substitute the value for FDa. Later, if you want
Faa to represent a different value, simply reenter
the FOQ ASET statement with a different expression.

FOQ ASET BAZ+lOOOH

FOQ ASET 3000H

FOO DEFL 6CDEH

ASSEMBLER FEATURES Page 4-13

PC MODE

Many of the pseudo-ops operate on or from the current
location counter, also known as the program counter or PC.
The current PC is the address of the next byte to be
generated.

In MACRO-SO, the PC has a mode, which gives symbols and
expressions their modes. (Refer again to the Overview in
Chapter 1 and the Symbols section in Chapter 3, if
necessary.) Each mode is given a segment of memory by
LINK-SO for the instructions assembled to each mode.

The four modes are Absolute, Data Relative, Code Relative,
and COMMON Relative.

If the PC mode is absolute, the PC is an absolute address.
If the PC mode is relative, the PC is a relative address and
may be considered an offset from the absolute address where
the beginning of that relative segment will be loaded by
LINK-SO.

The PC mode pseudo-ops are used to specify in which PC mode
a segment of a program will be assembled.

ASSEMBLER FEATURES Page 4-14

Absolute Segment

ASEG

ASEG never has operands.
non-relocatable code.

ASEG generates

ASEG sets the location counter to an absolute
segment (actual address) of memory. The ASEG will
default to 0, which could cause the module to write
over part of the operating system. We recommend
that each ASEG be followed with an ORG statement
set at l03H or higher.

ASSEMBLER FEATURES Page 4-15

Code Segment

CSEG

CSEG never has an operand. Code assembled in Code
Relative mode can be loaded into ROM/PROM.

CSEG resets the location counter to the code
relative segment of memory. The location will be
that of the last CSEG (default is 0), unless an ORG
is done after the CSEG to change the location.

Note, however, that the ORG statement does not set
a hard (absolute) address under CSEG mode. An ORG
statement under CSEG causes the assembler to add
the number of bytes specified by the <exp> argument
in the ORG statement to the last CSEG address
loaded. If, for example, ORG 50 is given, MACRO-SO
will add 50 bytes to the current CSEG location then
begin loading the CSEG. The clearing effect of the
ORG statement following CSEG (and DSEG as well) can
be used to give the module an offset. The
rationale for not allowing ORG to set an absolute
address for CSEG is to keep the CSEG relocatable.

To set an absolute address for the CSEG, use the /P
switch in LINK-SO.

CSEG is the default mode of the assembler.
Assembly begins with a CSEG automatically executed,
and the location counter in the Code Relative mode,
pointing to location 0 in the Code Relative segment
of memory. All subsequent instructions will be
assembled into the Code Relative segment of memory
until an ASEG, DSEG, or COMMON pseudo-op is
executed. CSEG is then entered to return the
assembler to Code Relative mode, at which point the
location counter returns to the next free location
in the Code Relative segment.

ASSEMBLER FEATURES Page 4-16

Data Segment

DSEG

The DSEG pseudo-op never has operands. DSEG
specifies segments of assembled relocatable code
that will later be loaded into RAM only.

DSEG sets the location counter to the Data Relative
segment of memory. The location of the data
relative counter will be that of the last DSEG
(default is 0), unless an ORG is done after the
DSEG to change the location.

Note, however, that the ORG statement does not set
a hard (absolute) address under DSEG mode. An ORG
statement under DSEG causes the assembler to add
the number of bytes specified by the <exp> argument
in the ORG statement to the last DSEG address
loaded. If, for example, ORG 50 is given, MACRO-SO
will add 50 bytes to the last DSEG address loaded
then begin loading the DSEG. The clearing effect
of the ORG statement following DSEG (and CSEG as
well) can be used to give the module an offset.
The rationale for not allowing ORG to set an
absolute address for DSEG is to keep the DSEG
relocatable.

To set an absolute address for the DSEG, use the ID
switch in LINK-SO.

ASSEMBLER FEATURES Page 4-17

Common Block

COMMON /<block name>/

The argument to COMMON is the common block name.
COMMON creates a common data area for every COMMON
block that is named in the program. If <block
name> is omitted or consists of spaces, the block
is considered to be blank common.

COMMON statements are non-executable, storage
allocating statements. .COMMON assigns variables,
arrays, and data to a storage area called COMMON
storage. This allows various program modules to
share the same storage area. Statements entered
following the • COMMON statement are assembled to
the COMMON area under the <block name>. The length
of a COMMON area is the number of bytes required to
contain the variables, arrays, and data declared in
the COMMON block, which ends when another PC mode
pseudo-op is encountered. COMMON blocks of the
same name may be different lengths. If the lengths
differ, then the program module with the longest
COMMON block must be loaded first (that is, must be
the first module name given in the LINK-SO command
line: see Chapter 6 for the description of
LINK-BO).

COMMON sets the location counter to the selected
common block in memory. The location is always the
beginning of the area so that compatibility with
the FORTRAN COMMON statement is maintained.

EXAMPLE:

ANVIL
COMMON
EQU
DB
OW
DCI
CSEG

/DATABIN/
lOOH
OFFH
l234H
'FORGE'

ASSEMBLER FEATURES Page 4-18

Set Origin

ORG <exp>

At any time, the value of a location counter may be
changed by use of ORG. Under the ASEG PC mode, the
location counter is set to the value of <exp>, and
the assembler assigns generated code starting with
that value. Under the CSEG, DSEG, and COMMON PC
modes, the location counter for the segment is
incremented by the value of <exp>, and the
assembler assigns generated code starting with the
value of that last segment address loaded plus the
value of <exp>. All names used in <exp> must be
known on pass 1, and the value must either be
Absolute or in the same area as the location
counter.

EXAMPLE:

DSEG
ORG 50

sets the Data Relative location counter to 50,
relative to the start of the Data Relative segment
of memory. This means that the first 50H addresses
will be filled with O. This method provides
relocatability. The ORG <exp> statement does not
specify a fixed address in CSEG or DSEG mode;
rather, LINK-80 loads the segment at a flexible
address appropriate to the modules being loaded
together.

On the other hand, a program that begins with the
statements

ASEG
ORG 800H

and is assembled entirely in Absolute mode will
always load beginning at 800H, unless the ORG
statement is changed in the source file. That is,
ORG <exp> following ASEG originates the segment at
a fixed (i.e., absolute) address specified by
<exp>. However, the same program, assembled in
Code Relative mode with no ORG statement, may be
loaded at any specified address by appending the
/P:<address> switch to the LINK-80 command string.
(For details, see Section 6.3, Switches.)

ASSEMBLER FEATURES Page 4-19

Relocate

.PHASE <exp>

.DEPHASE

.PHASE allows code to be located in one area, but
executed only at a different area with a start
address specified by <exp>. The <exp> must be an
absolute value. .DEPHASE is used to indicate the
end of the relocated block of code.

The PC mode within a .PHASE block is absolute, the
same as the mode of the <exp> in the .PHASE
statement. The code, however, is loaded in the
area in effect when the • PHASE statement is
encountered. The code within the block is later
moved to the address specified by <exp> for
execution.

EXAMPLE:

• PHASE 100H
FOO: CALL BAZ

JMP ZOO
BAZ: RET

.DEPHASE
ZOO: JMP 5

assembles as:

• PHASE 100H
0100 CD 0106 FOO: CALL BAZ
0103 C3 0007' JMP ZOO
0106 C9 BAZ: RET

.DEPHASE
0007' C3 0005 ZOO: JMP 5

END

.PHASE •••• DEPHASE blocks are a way to execute a
block of code at a specific absolute address.

ASSEMBLER FEATURES Page 4-20

FILE RELATED

The file related pseudo-ops insert long comments in the
program, give the module a name, end the module, or move
other files into the current program.

ASSEMBLER FEATURES Page 4-21

Comment

.COMMENT <de1im><text><de1im>

The first non-blank character encountered after
. COMMENT is taken as the delimiter. The <text>
following the delimiter becomes a comment block
which continues until the next occurrence of
<delimiter>.

Use the .COMMENT pseudo-op to make long comments.
It is not necessary to enter the semicolon to
indicate a COMMENT. Indeed, the main reason for
using • COMMENT is to override the need to begin
each comment line with a semicolon. During
assembly, • COMMENT blocks are ignored and not
assembled.

EXAMPLE:

.COMMENT * any amount of text
entered here

* :return to normal assembly

ASSEMBLER FEATURES

End of Program

END [<exp>l

Page 4-22

The END statement specifies the end of the module.
If the END statement is not included, a %No END
statement warning error message results.

The <exp> may be a label, symbol, number, or any
other legal argument that LINK-SO can load as the
starting point into the first address to be loaded.
If <exp> is present, LINK-SO will place an 80S0 JMP
instruction at OIOOH to the address of <exp>. If
<exp> is not present, then no start address is
passed to LINK-SO for that program, and execution
begins at the first module loaded. (Also, if <exp>
is not specified, the LINK-SO /G switch will not
work for the module.)

The <exp> tells LINK-SO that the program is a main
program. without <exp>, LINK-SO takes assembly
language pro9rams as subroutines. If you link only
assembly language programs and none contains an END
statement with <exp>, LINK-SO will ask for a main
pro9ram. If you link two or more pro9rams with END
<exp> statements, LINK-SO cannot distinguish which
should be the main program.

If you want to link two or more main programs, use
the /G:Name or /E:Name switches in LINK-SO (see
Section 6.2.2, Switches). The "Name" will be the
<exp> of the END statement for the program you want
to serve as the main pro9ram.

If any high-level language program is loaded with
assembly language modules, LINK-SO takes the
high-level language program as the main program
automatically. Therefore, if you want an assembly
language module executed before the high-level
language program, use the /G:Name or /E:Name switch
in LINK-SO to set the assembly language module as
the beginning of the program.

As an alternative, we recommend that you place a
CALL or INCLUDE statement at the beginning of the
high-level language program, and call in the
assembly language program for execution prior to
execution of the high-level language program.

ASSEMBLER FEATURES Page 4-23

Include

INCLUDE <filename>
$INCLUDE <filename>
MACLIB <filename>

All three pseudo-ops are synonomous.

These Include pseudo-ops insert source code from an
alternate assembly language source file into the
current source file during assembly. Use of an
Include pseudo-op eliminates the need to repeat an
often-used sequence of statements in the current
source file.

The <filename> is any valid file specification for
the operating system. If the filename extension
and/or device designation are other than the
default, source filename specifications must
include them. The default filename extension for
source files is .MAC. The default device
designation is the currently logged drive or
device.

The included file is opened and assembled into the
current source file immediately following the
Include pseudo-op statement. When end-of-file is
reached, assembly resumes with the next statement
following Include pseudo~op.

Nested Includes are not allowed. If encountered,
they will result in an objectionable syntax error,
o.

The file specified in the operand field must exist.
If the file is not found, the error V (value error)
is returned, and the Include is ignored. The V
error is also returned if the Include filename
extension is not .MAC.

On a MACRO-SO listing, the letter C is printed
between the assembled code and the source line on
each line assembled from an included file. See the
Listing Control Pseudo-op section below for a
description of listing file formats.

ASSEMBLER FEATURES Page 4-24

Name Module

NAME ('modname')

Name defines a name for the module. The
parentheses and quotation marks around modname are
required. Only the first six characters are
significant in a module name.

A module name may also be defined with the TITLE
pseudo-oPe In the absence of both the NAME and
TITLE pseudo-ops, the module name is created from
the source filename.

ASSEMBLER FEATURES Page 4-25

Radix

.RADIX <exp>

The <exp> in a .RADIX statement is always a decimal
numeric constant, regardless of the current radix.

The default input radix (or base) for all constants
is decimal. The • RADIX pseudo-op allows you to
change the input radix to any base in the range 2
to 16 •

• RADIX does not change the radix of the listing;
rather, it allows you to input numeric values in
the radix you choose without special notation.
(Values in other radixes still require the special
notations described in Section 3.4.1.) Values in
the generated code remain in hexadecimal radix.

EXAMPLE:

DEC:

BIN:

HEX:

OCT:

DECI:
HEXA:

assembles as:

0000' 14 DEC:
0002
0001' 1E BIN:
0010
0002' CF HEX:
0008
0003' 3B OCT:
OOOA
0004' 10 DECI:
0005' OC HEXA:

DB
• RADIX
DB
• RADIX
DB
• RADIX
DB
• RADIX
DB
DB

DB
• RADIX
DB
• RADIX
DB
• RADIX
DB
• RADIX
DB
DB

20
2
00011110
16
OCF
8
73
10
16
OCH

20
2
00011110
16
OCF
8
73
10
16
OCH

ASSEMBLER FEATURES Page 4-26

Request

.REQUEST <filename>[,<filename> •••]

When you run LINK-SO, .REQUEST sends a request to
the LINK-SO linking loader to search the filenames
in the list for undefined external symbols. If
LINK-80 finds any undefined external symbols
(external symbols for which a corresponding PUBLIC
symbol is not currently loaded), you will know that
you need to load one or more additional modules to
complete linking.

The filenames in the list should be in the form of
legal symbols. <filename> should not include a
filename extension or device designation. LINK-SO
assumes the default extension (.REL) and the
currently loqged disk drive.

EXAMPLE:

• REQUEST SUBRl

LINK-80 will search
which do not have
definitions declared
modules.

SUBRl for external
corresonding PUBLIC

among the currently

symbols
symbol
loaded

ASSEMBLER FEATURES Page 4-27

LISTING

Listing pseudo-ops perform two general functions: format
control and listing control. Format control pseudo-ops
allow the programmer to insert page breaks and direct page
headings. Listing control pseudo-ops turn on and off the
listing of all or part of the assembled file.

ASSEMBLER FEATURES Page 4-28

Format Control

These pseudo-ops allow you to direct page breaks, titles,
and subtitles on your program listings.

Form Feed

* *EJECT [<exp>]
PAGE <exp>
$EJECT

The form feed pseudo-ops cause the assembler to
start a new output page. The assembler puts a form
feed character in the listing file at the end of
the page.

The value of <exp> , if included, becomes the new
page size (measured in lines per page) and must be
in the range 10 to 255. The default page size is
50 lines per page.

EXAMPLE:

*EJECT 58

The assembler causes the printer
page every time 58 lines of
printed.

to start a new
program have been

ASSEMBLER FEATURES Page 4-29

Title

TITLE <text>

TITLE specifies a title to be listed on the first
line of each page. If more than one TITLE is
given, a Q error results. The first six characters
of the title are used as the module name, unless a
NAME pseudo-op is used. (If neither a TITLE nor a
NAME pseudo-op is used, the module name is created
from the source filename.)

EXAMPLE:

TITLE PROGl

The module ~ame is now PROGl. The module may be
called by this name, which will be printed at the
top of every listing page.

ASSEMBLER FEATURES Page 4-30

Subtitle

SUB TTL <text>
$TITLE ('<text>')

SUB TTL specifies a subtitle to be listed in each
page heading on the line after the title. The
<text> is truncated after 60 characters.

Any number of SUBTTLs may be given in a program.
Each time the assembler encounters SUBTTL, it
replaces the <text> from the previous SUBTTL with
the <text> from the most recently encountered
SUBTTL. To turn off SUBTTL for part of ~he output,
enter a SUB TTL with a null string for <text>.

EXAMPLE:

SUBTTL SPECIAL I/O ROUTINE

SUBTTL

The first SUBTTL causes the subtitle SPECIAL I/O
ROUTINE to be printed at the top of every page.
The second SUB TTL turns off subtitle (the subtitle
line on the listing is left blank).

ASSEMBLER FEATURES

General Listing Control

.LIST - List all lines with their code

.XLIST - Suppress all listing

Page 4-31

.LIST is the default condition. If you specify a
listing file in the command line, the file will be
listed.

When .XLIST is encountered in the source file,
source and object code will not be listed. .XLIST
remains in effect until a .LIST is encountered •

• XLIST overrides all other listing control
pseudo-ops. So, nothing will be listed, even if
another listing pseudo-op (other than .LIST) is
encountered.

EXAMPLE:

.XLIS-T -;l-ist inEJ -s uspenae-d here

.LIST ;listing resumes here

ASSEMBLER FEATURES Page 4-32

Print At Terminal

.PRINTX <delim><text><delim>

The first non-blank character encountered after
.PRINTX is the delimiter. The following text is
listed on the terminal during assembly until
another occurrence of the delimiter is encountered •
• PRINTX is useful for displaying progress through a
long assembly or for displaying the value of
conditional assembly switches •

• PRINTX will output on both passes. If only one
printout is desired, use the IFl or IF2 pseudo-op,
depending on which pass you want displayed. See
the Conditional pseudo-ops for IFl and IF2.

EXAMPLE:

.PRINTX *Assembly half done*

The assembler will send this message to the
terminal screen when encountered.

IFl
.PRINTX *Pass 1 done*
ENDIF

I~2
.PRINTX *Pass 2 done*
ENDIF

;pass 1 message only

;pass 2 message only

ASSEMBLER FEATURES Page 4-33

Conditional Listing Control

The three conditional listing control pseudo-ops are used to
specify whether or not you wish statements contained within
a false conditional block to appear on the listing. See
also the description of the IX switch in Chapter S.

Suppress False Conditionals

.SFCOND

.SFCOND suppresses the portion of the listing that
contains conditional expressions that evaluate as
false.

List False Conditionals

.LFCOND

.LFCOND assures the listing
expressions that evaluate false.

of conditional

Toggle False Listing Conditional

.TFCOND

.TFCOND toggles the current setting. .TFCOND
operates independently from .LFCOND and .SFCOND •
• TFCOND toggles the default setting, which is set
by the presence or absence of the Ix switch in the
assembler command line. When IX is present,
.TFCOND will cause false conditionals to list.
When IX is not given, .TFCOND will suppress false
conditionals.

ASSEMBLER FEATURES Page 4-34

Macro Expansion Listing Control

Expansion listing pseudo-ops control the listing of lines
inside macro and repeat pseudo-op (REPT, IRP, IRPC) blocks,
and may be used only inside a macro or repeat block.

Exclude Non-code Macro Lines

.XALL

.XALL is the default •

• XALL lists source code and object code produced by
a macro, but source lines which do not generate
code are not listed.

List Macro Text

.LALL

.LALL lists
expansions,
code.

the complete macro text for all
including lines that do not generate

Suppress Macro Listing

.SALL

.SALL suppresses listing of all text and object
code produced by macros.

ASSEMBLER FEATURES Page 4-35

CREF Listing Control Pseudo-ops

You may want the option of generating a cross reference
listing for part of a program but not all of it. To control
the listing or suppressing of cross references, use the
cross reference listing control pseudo-ops, .CREF and
.XCREF, in the source file for ~~CRO-SO. These two
pseudo-ops may be entered at any point in the program in the
OPERATOR field. Like the other listing control pseudo-ops,
.CREF and .XCREF support no ARGUMENTs.

Suppress Cross References

.XCREF

.XCREF turns of the .CREF (default) pseudo-oPe

.XCREF remains in effect until MACRO-SO encounters

.CREF. Use .XCREF to suppress the creation of
cross references in selected portions of the file.
Because neither .CREF nor .XCREF takes effect until
the IC switch is set in the MACRO-SO command line,
there is no need to use .XCREF if you want the
usual List file (one without cross references);
simply omit IC from the ALDS assembler command
line.

List Cross References

.CREF

.CREF is the default condition. Use .CREF to
restart the creation of a cross reference file
after using the .XCREF pseudo-oPe .CREF remains in
effect until MACRO-SO encounters .XCREF. Note,
however, that .CREF has no effect until the IC
switch is set in the MACRO-SO command line.

ASSEMBLER FEATURES Page 4-36

4.2 MACRO FACILITY

The macro facility allows you to write blocks of code which
can be repeated without recoding. The blocks of code begin
with either the macro definition pseudo-op or one of the
repetition pseudo-ops and end with the ENDM pseudo-oPe All
of the macro pseudo-ops may be used inside a macro block.
In fact, nesting of macros is limited only by memory.

The macro facility of the MACRO-SO macro assembler includes
pseudo-ops for:

macro definition:
MACRO

repetitions:
REPT (repeat)
IRP (indefinite repeat)
IRPC (indefinite repeat character)

termination:
ENDM
EXITM

unique symbols within macro blocks:
LOCAL

The macro facility also supports some
operators:

& . . , ,

%

special macro

ASSEMBLER FEATURES Page 4-37

Macro Definition

<name> MACRO <dummy>[,<dummy> •••]

ENDM

The block of statements from the MACRO statement
line to the ENDM statement line comprises the body
of the macro, or the macro's definition.

<name> is like a LABEL and conforms to the rules
for forming symbols. Note that <name> may be any
length, but only the first 16 characters are passed
to the linker. After the macro has been defined,
<name> is used to invoke the macro.

A <dummy> is a place holder that is replaced by a
parameter in a one-for-one text substitution when
the MACRO block is used. Each <dummy> may be up to
32 characters long. The number of dummys is
limited only by the length of a line. If you
specify more than one dummy, they must be separated
by commas. MACRO-SO interprets all characters
between commas as a single dummy.

NOTE

A dummy is always recognized exclusively as
a dummy. Even if a register name (such as
A or B) is used as a dummy, it will be
replaced by a parameter during expansion.

A macro block is not assembled when it is
encountered. Rather, when you call a macro, the
assembler "expands" the macro call statement by
bringing in and assembling the appropriate macro
block.

If you want to use the TITLE, SUB TTL , or NAME
pseudo-ops for the portion of your program where a
macro block appears, you should be careful about
the form of the statement. If, for example, you
enter SUBTTL MACRO DEFINITIONS, MACRO-80 will
assemble the statement as a macro definition with
SUBTTL as the macro name and DEFINITIONS as the
dummy. To avoid this problem, alter the word MACRO
in some way; e.g., - MACRO, MACROS, and so on.

ASSEMBLER FEATURES Page 4-38

Calling a Macro

To use a macro, enter a macro call statement:

<name> <parameter>[,<parameter> •••]

<name> is the <name> of the MACRO block. A
<parameter> replaces a <dummy> on a one-for-one
basis. The number of parameters is limited only by
the length of a line. If you enter more than one
parameter, they must be separated by commas. If
you place angle brackets around parameters
separated by commas, the assembler will pass all
the items inside the angle brackets as a single
parameter. For example:

Foa 1,2,3,4,5

passes five parameters to the macro, but:

FOO <1,2,3,4,5>

passes only one.

The number of parameters in the macro call
statement need not be the same as the number of
dummys in the MACRO definition. If there are more
parameters than dummys, the extras are ignored. If
there are fewer, the extra dummys will be made
null. The assembled code will include the macro
block after each macro call statement.

EXAMPLE:

EXCHNG MACRO
PUSH
PUSH
POP
POP
ENDM

X,Y
X
Y
X
Y

If you then enter as part of a program some code
and a macro call statement:

LDA
MOV
LDA
MOV
EXCHNG

2FH
HL,A
3FH
DE,A
HL,DE

ASSEMBLER FEATURES Page 4-39

assembly generates the code:

0000' 3A 002F LDA 2FH
0003' 67 MOV HL,A
0004' 3A 003F LDA 3FH
0007' 57 MOV DE,A

EXCHNG HL,DE
0008' ES + PUSH HL
0009' DS + PUSH DE
OOOA' E1 + POP HL
OOOB' D1 + POP DE

ASSEMBLER FEATURES Page 4-40

Repeat Pseudo-ops

The pseudo-ops in this group allow the operations in a block
of code to be repeated for the number of times you specify.
The major differences between the Repeat pseudo-ops and
MACRO pseudo-op are:

1. MACRO gives the block a name by which to call in
the code wherever and whenever needed; the macro
block can be used in many different programs by
simply entering a macro call statement.

2. MACRO allows parameters to be passed to the MACRO
block when a MACRO is called; hence, parameters
can be changed.

Repeat pseudo-op parameters must be assigned as a part of
the code block. If the parameters are known in advance and
will not change, and if the repetition is to be performed
for every program execution, then Repeat pseudo-ops are
convenient. With the MACRO pseudo-op, you must call in the
MACRO each time it is needed.

Note that each Repeat pseudo-op must be matched with the
ENDM pseudo-op to terminate the repeat block.

ASSEMBLER FEATURES Page 4-41

Repeat

REPT <exp>

ENDM

Repeat block of statements between REPT
<exp> times. <exp> is evaluated as
unsigned number. If <exp> contains an
symbol or undefined operands, an
generated.

EXAMPLE:

X

and ENDM
a l6-bit
External

error is

SET a
REPT 10
SET X+l

igenerates DB 1 - DB 10
X

assembles as:

0000

0000'
0001'
0002'
0003'
0004'
0005'
0006'
0007'
0008'
0009'

X

X

01 +
02 +
03 +
04 +
05 +
06 +
07 +
08 +
09 +
OA +

DB X
EN OM

SET a
REPT 10
SET X+l
DB X
ENDM
DB X
DB X
DB X
DB X
DB X
DB X
DB X
DB X
DB X
DB X

END

igenerates DB 1 - DB 10

ASSEMBLER FEATURES Page 4-42

Indefinite Repeat

IRP <dummy>,<parameters inside angle brackets>

ENDM

Parameters must be enclosed in angle brackets.
Parameters may --be any legal symbol, string,
numeric, or character constant. The block of
statements is repeated for each parameter. Each
repetition substitutes the next parameter for every
occurrence of <dummy> in the block. If a parameter
is null (i.e., <», the block is processed once
with a null parameter.

EXAMPLE:

IRP
DB
ENDM

X,<1,2,3,4,S,6,7,8,9,10>
X

This example generates the same bytes (DB 1 DB
10) as the REPT example.

When IRP is used inside a MACRO definition block,
angle brackets around parameters in the macro call
statement are removed before the parameters are
passed to the macro block. An example, which
generates the same code as above, illustrates the
removal of one level of brackets from the
parameters:

FOO MACRO
IRP
DB
ENDM
ENDM

X
Y,<X>
Y

When the macro call statement

FOQ <1,2,3,4,5,6,7,8,9,10>

is assembled, the macro expansion becomes:

IRP
DB
ENDM

Y,<1,2,3,4,5,6,7,8,9,IO>
Y

The angle brackets around the parameters are
removed, and all items are passed as a single
parameter.

ASSEMBLER FEATURES Page 4-43

Indefinite Repeat Character

IRPC <dummy>,<string>

ENDM

The statements in the block are repeated once for
each character in the string. Each repetition
substitutes the next character in the string for
every occurrence of <dummy> in the block.

EXAMPLE:

IRPC
DB
ENDM

X,Ol23456789
X+l

This example generates the same code (DB 1 - DB 10)
as the two previous examples.

ASSEMBLER FEATURES Page 4-44

Termination

End Macro

ENDM

ENDM tells the assembler that the MACRO or Repeat
block is ended.

Every MACRO, REPT, IRP, and IRPC must be terminated
with the ENDM pseudo-ope Otherwise, the
'Unterminated REPT/IRP/IRPC/MACRO' message is
generated at the end of each pass. An unmatched
ENDM causes an 0 error.

If you wish to be able to exit
repeat block before expansion
EXITM.

from a MACRO or
is completed, use

Exit Macro

EXITM

The EXITM pseudo-op is used inside a MACRO or
Repeat block to terminate an expansion when some
condition makes the remaining expansion unnecessary
or undesirable. Usually EXITM is used in
conjunction with a conditional pseudo-oPe

When an EXITM is assembled, the expansion is exited
immediately. Any remaining expansion or repetition
is not generated. If the block containing the
EXITM is nested within another block, the outer
level continues to be expanded.

EXAMPLE:

Foa
Y

Y

MACRO
SET
REPT
SET
IFE
EXITM
ENDIF
DB
ENDM
ENDM

x
o
X
Y+l
Y-OFFH itest Y
iif true, exit REPT

Y

ASSEMBLER FEATURES Page 4-45

Macro Symbol

LOCAL <dummy>[,<dummy> •.•]

The LOCAL pseudo-op is allowed only inside a MACRO
definition block. When LOCAL is executed, the
assembler creates a unique symbol for each <dummy>
and substitutes that symbol for each occurrence of
the <dummy> in the expansion. These unique symbols
are usually used to define a label within a macro,
thus eliminating multiple-defined labels on
successive expansions of the macro. The symbols
created by the assembler range from •• 0001 to
•• FFFF. Users should avoid the form •• nnnn for
their own symbols. A LOCAL statement must precede
all other types of statements in the macro
definition.

EXAMPLE:

-Faa MACRO NUM,Y
LOCAL A,B,C,D,E

A: DB 7
B: DB 8
C: DB Y
D: DB Y+l
E: DW NUM+l

JMP A
ENDM
Faa OCOOH,OBEH
END

generates the following code (notice that MACRO-80
has substituted LABEL names in the form •• nnnn for
the instances of the dummy symbols):

Faa

A:
B:
C:
D:
E:

0000' 07 + •• 0000:
0001' 08 + •• 0001:
0002' BE + .• 0002:
0003' BF + .• 0003:
0004' OCOl + .• 0004:
0006' C3 0000' +

MACRO
LOCAL
DB
DB
DB
DB
DW
JMP
ENDM
Faa
DB
DB
DB
DB
DW
JMP
END

NUM,Y
A,B,C,D,E
7
8
Y
Y+l
NUM+l
A

OCOOH,OBEH
7
8
OBEH
OBEH+l
OCOOH+l
•. 0000

ASSEMBLER FEATURES Page 4-46

Special Macro Operators

Several special operators can be used in a macro block to
select additional assembly functions.

& Ampersand concatenates text or symbols. (The & may
not be used in a macro call statement.) A dummy
parameter in a quoted string will not be
substituted in expansion unless preceded
immediately by &. To form a symbol from text and a
dummy, put & between them.

For example:

ERRGEN
ERROR&X:

MACRO
PUSH
MVI
~P

ENDM

X
B
B,'&X'
ERROR

The call ERRGEN A will then generate:

ERRORA: PUSH
MVI
JMP

B
B,'A'
ERROR

;; In a block operation, a comment preceded by two
semicolons is not saved as a part of the expansion
(i.e., it will not appear on the listing even under
.LALL) • A comment preceded by only one semicolon,
however, will be preserved and appear in the
expansion.

An exclamation point may be entered in an argument
to indicate that the next character is to be taken
literally. Therefore, 1; is equivalent to <;>.

% The percent sign is used only in a macro argument
to convert the expression that follows it (usually
a symbol) to a number in the current radix (set by
the .RADIX pseudo-op). During macro expansion, the
number derived from converting the expression is
substituted for the dummy. Using the % special
operator allows a macro call by value. (Usually, a
macro call is a call by reference with the text of
the macro argument substituting exactly for the
dummy.)

ASSEMBLER FEATURES Page 4-47

The expression following the % must conform to the
same rules as expressions for the OS (Define Space)
pseudo-oPe That is, a valid expression that
evaluates to an absolute (non-relocatable) constant
is required.

, EXAMPLE:

PRINTE

SYMl
SYM2

MACRO MSG,N
.PRINTX * MSG,N *

ENDM
EQU 100
EQU 200
PRINTE <SYMI + SYM2 = >,%(SYMl + SYM2)'

Normally, the macro call statement would cause the
string (SYMl + SYM2) to be substituted for the
dummy N. The result would be:

.PRINTX * SYMI + SYM2 = (SYMI + SYM2)

When the % is placed in front of the parameter, the
assembler generates:

.PRINTX * SYMl + SYM2 = 300 *

ASSEMBLER FEATURES Page 4-48

4.3 CONDITIONAL ASSEMBLY FACILITY

Conditional pseudo-ops allow users to design blocks of code
which test for specific conditions then proceed accordingly.

All conditionals follow the format:

IFxxxx [argument]

[ELSE

.]
ENDIF

COND [argument]

.
[ELSE

.]
ENDC

Each IFxxxx must have a matching ENDIF to terminate the
conditional. Each COND must have a matching ENDC to
terminate the conditional. Otherwise, an 'Unterminated
conditional' message is generated at the end of each pass.
An ENDIF without a matching IF or an ENDC without a matching
COND causes a C error.

The assembler evaluates the conditional statement to TRUE
(which equals FFFFH, or -1, or any non-zero value), or to
FALSE (which equals aaaaH). The code in the conditional
block is assembled if the evaluation matches the condition
defined in the conditional statement. If the evaluation
does not match, the assembler either ignores the conditional
block completely or, if the conditional block contains the
optional ELSE statement, assembles only the ELSE portion.

Conditionals may be nested up to 255 levels. Any argument
to a conditional must be known on pass 1 to avoid V errors
and incorrect evaluation. For IF/IFT/COND and IFF/IFE the
expression must involve values which were previously
defined, and the expression must be Absolute. If the name
is defined after an IFDEF or IFNDEF, pass 1 considers the
name to be undefined, but it will be defined on pass 2.

Each conditional block may include the optional ELSE
pseudo-op, which allows alternate code to be generated when
the opposite condition exists. Only one ELSE is permitted
for a given IFxxxx/COND. An ELSE is always bound to the
most recent, open IF. A conditional with more than one ELSE
or an ELSE without a conditional will cause a C error.

ASSEMBLER FEATURES Page 4-49

Conditional Pseudo-ops

*

IF <exp>
IFT <exp>
COND <exp>

IFE <exp>
IFF <exp>

If <exp> evaluates to not-O, the statements within
the conditional block are assembled.

If <exp> evaluates to 0, the statements in the
conditional block are assembled.

IFl Pass 1 Conditional

If the assembler is in pass 1, the statements in
the conditional block are assembled.

IF2 Pass 2 Conditional

If the assembler is in pass 2, the statements in
the conditional block are assembled.

IFDEF <symbol>

If the <symbol> is defined or has been declared
External, the statements in the conditional block
are assembled.

IFNDEF <symbol>

IFB <arg>

If the <symbol> is not defined or not declared
External, the statements in the conditional block
are assembled.

The angle brackets around <arg> are required.

If the <arg> is blank (none given) or null (two
angle brackets with nothing in between, <», the
statements in the conditional block are assembled.

ASSEMBLER FEATURES Page 4-50

IFNB <arg>

The angle brackets around <arg> are required.

If <arg> is not blank, the statements in the
conditional block are assembled. Used for testing
for dummy parameters.

IFIDN <argl>,<arg2>

The angle brackets around <argl> and <arg2> are
required.

If the string <argl> is identical to the string
<arg2>, the statements in the conditional block are
assembled.

IFDIF <argl>,<arg2>

ELSE

The angle brackets around <argl> and <arg2> are
required.

If the string <argl> is different from the string
<arg2>, the statements in the conditional block are
assembled.

The ELSE pseudo-op allows you to generate alternate
code when the opposite condition exists. May be
used with any of the conditional pseudo-ops.

ENDIF
* ENDC

These pseudo-ops terminate conditional blocks. A
terminate pseudo-op must
conditional pseudo-op used.
with an IFxxxx pseudo-oPe
with the COND pseudo-oPe

be given for every
ENDIF must be matched

ENDC must be matched

contents

Chapter 5 Running MACRO-SO

5.1 Invoking MACRO-SO 5-2
5.2 MACRO-SO Command Line 5-2

Source 5-3
Object 5-4
List 5-5
Switches 5-6
Additional Command Line Entries 5-9

Filename Extensions 5-10
Device Designations 5-11
Device Designations as Filenames 5-12

5.3 MACRO-SO Listing File Formats 5-13
File Format 5-13
Symbol Table Format 5-14

5.4 Error Codes and Messages 5-15

CHAPTER 5

RUNNING MACRO-SO

When you have completed creating the assembly language
source file, you are ready to assemble it. MACRO-SO
assembles the source file statements, including expanding
macros and repeat pseudo-ops. The result of assembly will
be relocatable object code which is ready to link and load
with LINK-SO. The relocatable object code can be saved in a
disk file, which the assembler gives the filename extension
.REL. The assembled (REL) file is not an executable file.
The file will be executable only after it is processed
through LINK-SO.

MACRO-SO resides in approximately 19K of memory and has an
assembly rate of over lOOOlines per minute. MACRO-SO rtinS
under the CP/M operating system.

MACRO-SO assembles your source file in two passes. During
pass 1, MACRO-SO evaluates the program statements,
calculates how much code it will generate, builds a symbol
table where all symbols are assigned values, and expands
macro call statements. During pass 2, MACRO-SO fills in the
symbol and expression values from the symbol table, again
expands macro call statements, and emits the relocatable
code. MACRO-SO checks the values of symbols, expressions,
and macros during both passes. If a value during pass 2 is
different from the value during pass 1, MACRO-SO returns a
phase error code.

Before MACRO-SO can be run, the diskette which contains
MACRO-SO must be inserted in the appropriate disk drive.
The diskette on which you created the source file must also
be in a disk drive.

RUNNING MACRO-aO Page 5-2

5.1 INVOKING ~~CRO-aO

To invoke MACRO-SO, enter:

Mao

The program file MSO.COM will be loaded. MACRO-SO will
display an asterisk (*) to indicate that the assembler is
ready to accept a command line.

5.2 MACRO-SO COMMAND LINE

The command line for MACRO-SO consists of four fields,
labeled:

Object,List=Source/Switch

The command line may be entered on its own line, or it may
be entered at the same time as the MaO command. (If MBO and
the command line are entered on one line, MACRO-SO will not
return the asterisk prompt.) Entering the command line on
its own line allows single drive configurations to use
MACRO-SO. In addition, by enterinq MaO and the command line
separately, you are able to perform another assembly without
reinvoking MACRO-aO. When assembly is finished, MACRO-SO
will return the asterisk (*) prompt and wait for another
command line. To exit MACRO-aO when you have entered MaO
and the command line separately, type <CTRL-C>.

If you are performing only one assembly, entering the
command line on the same line as Mao is convenient; it
requires less typing and allows the assembly operation to be
part of a SUBMIT command. When you enter MaO and the
command line together, MACRO-aD exits automatically to the
operating system.

NOTE

If you enter MaO and the
command line separately, you
must enter the command line in
upper case only. If you do
not, MACRO-SO will return a
?Command Error message. If
you enter MSO and the command
line on one line, the entries
may be in either upper or
lower case (or mixed) because
CP/M converts all entries to
upper case before passing the
entries.

RUNNING MACRO-aD Page 5-3

Source (=filename)

To assemble your source program, you must enter at least an
equal sign (=) and the source filename.

The =filename indicates which source file you want to
assemble. If the source file disk is not in the currently
logged drive, you must include the drive designation as part
of the filename. If the source filename is entered without
an extension, MACRo-aD assumes that the extension is .MAC.
If the extension is not .MAC, you must include the extension
as part of the filename. For other possibilities for
drive/device designations and filename extensions, see the
Additional Command Line Entries section, below.)

The Source entry is the only entry required besides MaO.

The simplest command is:

Mao =Source

This command directs MACRO-aD to assemble the source file
and save the result in a relocatable object file (called a
REL file) with the same name as the source file. If the
source file is NEIL.MAC, the command line:

Mao =NEIL

generates an assernbleafile named NEIL.REL.

An additional option is to enter only a comma (,) to the
left of the equal sign. When MACRO-aD sees a comma as the
first entry after the MaO entry, it suppresses all output
files (Object and List). The command line

Mao ,=NEIL

causes MACRO-80 to assemble the file NEIL.MAC, but no output
files are created. Programmers use this command line to
check syntax in the source program before saving the
assembled program. Because no files are generated, the
assembly is completed faster and errors are known sooner.

RUNNING MACRO-aO Page 5-4

Object (filename)

An Object entry is always optional. However, certain
circumstances will compel you to make some entry for the
Object.

The Object file saves the assembled program in a disk file.
LINK-SO uses the Object file to create an executable
program. If both Object and List entries are omitted from a
command line (as in =Source), MACRO-aO will generate an
Object file with the same filename as the Source, but with
the default extension .REL.

If you want your Object file to have a name different from
the source file, you must enter a filename in the Object
field. MACRO-SO will still append the filename extension
.REL, unless you also enter an extension.

Also, if you want both a List file and a REL file generated,
you must enter a filename for the Object, even if you want
the REL file named after the source file. If you enter a
filename for the List but omit the Object, no REL file will
be generated. Programmers do use this feature for checking
the program for errors before final assembly. The program
listing aids debugging.

The name for the Object file may be the same as the source
filename or any other legal filename you choose. Since it
is practical to have all files which relate to a program
carry some mutual indication of their relationship, most
often you will want to give your object file the same name
as your source file.

RUNNING MACRO-SO Page 5-5

List (,filename)

A List entry is always optional. The comma is required in
front of all List entries. If you want a List file, enter a
,filename for the List. (There is an alternative to this
rule. See the Switches section below for discussion of the
/L switch.)

MACRO-SO appends the default extension .PRN to the List file
unless you specify a different extension in the List entry.

The command line:

Mao ,NEIL=NEIL

assembles the file NEIL. MAC (source file) and creates the
List file NEIL.PRN. An Object (REL) file is not created.

The name may be. the same as the source filename or any other
legal filename you choose. Since it is practical to have
all files which relate to a program carry some mutual
indication of their relationship, most often you will want
to give your listing file the same name as your source file.

Avoid entering only a comma for the List after entering a
filename for the Object. For example:

Mao NEIL,=NEIL

MACRO-SO will probably ignore the comma and assemble the
source file into a REL file. It is possible that MACRO-SO
might return a COMMAND ERROR message.

If you enter only a comma for the List and nothing for the
Object, MACRO-SO will assemble the source file, but will
generate no output files. This command

MSO ,=Source

allows you to check the source program for syntax errors
before saving the assembled program in a disk file. While
MACRO-SO always checks for errors, this command form
provides much faster assembly because the output files do
not have to be created.

At the end of assembly, MACRO-SO will print the message:

[xx] [No] Fatal errors [,xx warnings]

This message reports the number of fatal errors and warning
errors encountered in the program. The message is listed at
the end of every assembly on the terminal screen and in the
listing file. When the message appears, the assembler has
finished. When the message No Fatal Errors appears, the
assembly is complete and successful.

RUNNING MACRO-SO Page 5-6

Switches (/Switch)

You can command MACRO-SO to perform some additional
functions besides assembling and creating object and listing
files. These additional commands are given to MACRO-SO as
entries at the end of the command line. A Switch entry
directs MACRO-SO to "switch on" some additional or alternate
function; hence, these entries are called switches.
Switches are letters preceded by slash marks (/). Any
number of switches may be entered, but each switch must be
preceded by a slash. For example:

MSO ,=NEIL/L/R

The available switches for MACRO-SO are:

Switch

/0

Action

Octal listing. MACRO-SO generates List
addresses in octal radix.

file

/H Hexadecimal listing. MACRO-SO generates List file
addresses in hexadecimal. This is the default.

/R Force generation of an Object file with the same
name as the source file. May be used instead of
giving a filename in the Object field of the
command line.

This switch is convenient when you want a REL file
but forgot to enter a filename in the Object field
and entered a comma and filename or a comma only
in the List field. (Remember: if no filenames or
comma is entered before the equal sign, a REL file
is generated.) Thus, if you enter

MSO ,NEIL=NEIL
or MSO ,=NEIL

then decide, before pressing <ENTER>, that you
want a REL file, simply add IR. The command line
would then be:

MBO ,NEIL=NEIL/R
or MBO ,=NEIL/R

RUNNING MACRO-80 Page 5-7

IL Force generation of a listing file with the same
name as the source file. May be used instead of
giving a filename in the List field of the command
line.

This switch is convenient when you want a List
file but forgot to enter a filename in the List
field. If you enter the command line:

Mao =NEIL
or MaO ,=NEIL
or MaO NEIL=NEIL

then decide, before pressing <ENTER>, that you do
want a List file, simply add /L. The command
would then be:

Mao =NEIL/L
or MaO ,=NEIL/L
or MaO NEIL=NEIL/L

IC Causes MACRO-80 to generate a special List file
(with the same name as the Source file) for use
with CREF-80 Cross Reference Facility. If you
want to use CREF-80, you must assemble your file
_with _t:bJ_~_J~~,ti_t~h______§~_t;.. _§~~__ _ ____ ~h~p_!;_~~ _____ ?, ____ 9~F- 8 0
Cross Reference Facility, for further details.

IZ Directs MACRO-80 to assemble Z80 opcodes. If your
source file contains Z80 opcodes and if you do not
include the .Z80 pseudo-op in your- source file,
then you must use the IZ switch at assembly time
so that MACRO-80 will assemble the Z80 opcodes.

II Directs MACRO-80 to assemble 8080 opcodes. If
your source file contains 8080 opcodes and if you
do not include the .8080 pseudo-op in your source
file, then you must use the II switch at assembly'
time so that MACRO-SO will assemble the 8080
opcodes. (Default)

/P Each IP allocates an extra 256 bytes of stack
space for use during assembly. Use IP if stack
overflow errors occur during assembly. Otherwise,
IP is not needed.

RUNNING MACRO-80 Page 5-8

1M The 1M switch initializes Block data areas. If
you want the area that is defined by the DS
(Define Space) pseudo-op initialized to zeros,
then you should use the 1M switch in the command
line. Otherwise, the space is not guaranteed to
contain zeros. That is, DS does not automatically
initialize the space to zeros, in which case you
may not know what is stored in the DS space or how
the program will be affected.

IX The IX switch sets the default and current setting
to suppress the listing of false conditionals.
Absence of IX in the command line sets the default
and current setting to list conditional blocks
which evaluate false. IX is often used in
conjunction with the conditional listing pseudo-op
.TFCOND. Refer to the Listing Pseudo-ops section
in Chapter 4 for detailse

RUNNING MACRO-BO Page 5-9

Additional Command Line Entries

Each command line field supports two additional types of
entries--filename extensions and device designations. These
two types of entries are actually part of a "file
specification." A file specification includes the device
where a file is located, the name of the file, and the
filename extension.

Usually, filename extensions and device designations are
handled by defaults--the MACRO-80 program "inserts" these
entries if their positions are left blank in a command line.
The default assignments in no way prevent you from entering
either filename extensions or device designations, including
entries that match the default entries. The programmer may
enter or omit these additional entries in any combination.

The format for a file specification under MACRO-BO is:

dev:filename.ext

where: dev: is a 1-3 letter device designation followed by
a (required) colon.

filename is a 1-8 letter filename •

• ext is a 1-3 character filename extension preceded
by a (required) period.

RUNNING MACRO-SO Page 5-10

Filename Extensions (.ext)

To distinguish between Source file, Object file, and List
file, MACRO-SO appends an extension to each filename.
Filename extensions are three-letter mnemonics appended to
the filename with a period (.) between the filename and the
extension. The extension which MACRO-SO appends reflects
the type of file. Since the extensions are supplied by
MACRO-SO, they are called default extensions. The default
extensions which MACRO-SO supplies are:

.REL

.PRN
• COM

Relocatable object file
Listing file
Absolute (executable object) file

Also, MACRO-SO assumes that, if no filename extension is
entered, a source file carries the filename extension .MAC.

You may supply your own extensions, if you find this
necessary or desirable. The disadvantage is that whenever
you call the file, you must always remember to include your
extension. Also, you must remember what type of file it
is--relocatable, source, absolute, etc. The advantage of
allowing MACRO-SO to assign default extensions is that you
always have a mnemonic indication of the type of file, and
you can call the filename without appending the extension,
in most cases.

RUNNING MACRO-80 Page 5-11

Device Designations (dev:)

Each of the fields in a command line (except Invocation)
also may include a device designation.

When a device designation is specified in the Source field,
the designation tells MACRO-SO where to find the source
file. When a device designation is specified in the Object
or List fields, the designation tells MACRO-SO where to
output the object or list file. If the device designation
is omitted from any of these fields, MACRO-80 assumes
(defaults to) the currently logged drive. Thus, any time
the device designation is the currently logged drive or
device, the device designation need not be specified.

It is important to include device designations if several
devices or drives will be used during an assembly. For
example, if your ALDS diskette is in drive A and your
program diskette is in drive B, and you want your REL file
output to drive B, you need to give the command line:

MSO =B:NEIL

When the REL file is output, the currently logged drive is
drive B. (However, when MACRO-SO is finished, drive A will
be the currently logged drive again.) In contrast, if you
saved your source program on the MACRO-SO diskette in drive
A and want the REL file output to a diskette in drive B,
then yon-ne-ed-to----e-nte-r----the--eommand---i-in-e--:

MSO B:=A:NEIL

As a rule of thumb, if you are not sure if you need to
include the device designation (especially the drive
designation), enter a designation; it is the one sure way
to get the right files in the right places.

The available device designations for MACRO-SO are:

A:, B:, C:, •••
LST:
TTY:
HSR:

Disk drives
Line Printer
Terminal Screen or Keyboard
High Speed Reader

RUNNING MACRO-aO Page 5-12

Device Designations as Filenames

As an option, you may enter a device designation only in the
command line fields in place of a filename. The use of this
option gives various results depending on which device is
specified and in which field the device is specified. For
example:

Mao ,TTY:=TTY:

allows you to assemble a line immediately on input to check
for syntax or other errors. A modification of this command
(that is, Mao ,LST:=TTY:), provides the same result but
printed on a line printer instead of the terminal screen.

If you use either of these commands (,TTY:=TTY: or
,LST:=TTY:), your first entry should be an END statement.
You need to put the assembler into pass 2 before it will
emit the code. If you simply start entering statement lines
without first entering END, you will receive no response
until an END statement is entered. Then you will have to
reenter all your statements before you see any code
generated.

The following table illustrates the results of the various
choices. The table is meant to indicate the possibilities
rather than provide an exhaustive list of the combinations.

dev: Object ,List =Source

A: , B: , write file write file N/A
C: , D: to drive to drive (a filename

specified specified must be
specified)

HSR: N/A N/A reads source
(input only) (input only) program from

high-speed
reader

LST: N/A writes N/A
(unreadable listing to (output only)
file format) line printer

TTY: N/A "writes" "reads" source
(unreadable listing to program from
file format) screen keyboard

Figure 5.1: Effects of Device Designations without Filenames

RUNNING MACRo-aD Page 5-13

5.3 MACRO-aD LISTING FILE FORMATS

A listing of a MACRO-80 file displays the two parts of the
file in two different formats. One format displays the file
lines. The second format displays symbol table listings.

File Format

Each page of a MACRO-80 listing prints header data in the
first two lines. If no header data were commanded in the
source file (neither the TITLE nor SUBTTL pseudo-op was
given), those portions of the header lines are left blank.

The format is:

[TITLE text]
[SUBTTL text]

Mao z.zz PAGE x

where: TITLE text is the text supplied with the .TITLE
pseudo-op, if .TITLE was included in the source
file. If no .TITLE pseudo-op was given in the
source file, this space is left blank.

z.zz is the version number of your MACRO-80 program.

x is the page number, which is shown and incremented
only when a .PAGE pseudo-op is encountered in the
source file, or whenever the current page size has
been filled.

SUBTTL text is the text supplied with the .SUBTTL
pseudo-op, if .SUBTTL was included in the source
file. If no .SUBTTL was given in the source file,
this space is left blank.

A blank line follows the header data.
listing file begins on the next line.

The format of a listing line is:

[error] iiiim xx xxxxrn[w] text

The text of the

where: error represents a one-letter error code. An error
code is printed only if the line contains an error.
Otherwise, the space is left blank.

iiii represents the location counter. The number is
a--4-digit hexadecimal number or a 6-digit octal
number. The radix of the location counter number is
determined by the use of the /0 or /H switch in the
MACRO-aD command line Switch field. If no radix
switch was given, the default radix is hexadecimal
(4-digit) •

RUNNING MACRO-80 Page 5-14

m represents the PC mode indicator character. The
possible symbols are:

"
<space>

*

Code Relative
Data Relative
COMMON Relative
Absolute
External

xx and ~ represent the assembled code. xx
represents a one-byte value. One-byte values are
always followed immediately by a space. xxxx
represents a two-byte value, with the high-order
byte printed first (this is the opposite of the
order in which they are stored). Two-byte values
are followed bv one of the mode indicators discussed
above (indicated by the second rn).

[w] represents a line in the MACRO-SO file that carne
from another file through an INCLUDE pseudo-oPi or
a line that is part of an expansion (MACRO, REPT,
IRP, IRPC). For lines from an INCLUDE statement, a
C is printed following the assembled code; for
lines in an expansion, a plus sign (+) is printed
following the assembled code. Otherwise, this space
is blank.

text represents the rest of the line, including
labels, operations, arguments, and comments.

Symbol Table Format

The symbol table listing page follows the same header data
format as the file line pages. However, instead of a page
number, the symbol table page shows PAGE S.

Then, in a symbol table listing, all macro names in a
program are listed alphabetically. Next, all symbols are
listed, also alphabetically. A tab follows each symbol,
then the value of the symbol is printed. Each symbol value
is followed by one of the following characters:

I

U

C

*
<space>

PUBLIC symbol

Undefined symbol

COMMON block name. The value shown for the
COMMON block name is its length in bytes in
hexadecimal or octal radix.

External symbol

Absolute value

RUNNING MACRO-80 Page 5-15

Program relative value

" Data relative value

COMMON relative value

5.4 ERROR CODES AND MESSAGES

Errors encountered during assembly cause MACRO-80 to return
either an error code or an error message. Error codes are
one-character flags printed in column one of the listing
file. If a listing file is not being printed on the
terminal screen, the lines containing errors will
nevertheless be printed on the terminal screen. Error
messages are printed at the end of the listing file, or, if
the listing file is not being displayed on the terminal
screen, any error messages will be displayed at the end of
the error code lines.

ERROR
CODE -- MEANING

A Argument error-.
The argument to a pseudo-op is not in correct
format or is out of range.

C Conditional nesting error.
ELSE without IF, ENDIF without IF, two ELSEs for
one IF, ENDC without COND.

o Double defined symbol.
Reference to a symbol which has more than one
definition.

E External error.
Use of an External is illegal in the flagged
context. For example, FOO SET NAME or LXI
B,2-NAME.

M Multiply defined. symbol.
The definition is for a symbol that already has a
definition.

N Number error.
An error in a number, usually a bad digit. For
example, SQ.

RUNNING MACRO-SO Page 5-16

o Bad opcode or objectionable syntax.
ENDM, LOCAL outside a block; SET, EQU, or MACRO
without a name; bad syntax in an opcode; or bad
syntax in an expression (for example, mismatched
parentheses, quotes, consecutive operators).

P Phase error.
The value of a label or EQU name is different
during pass 2 from its value during pass 1.

Q Questionable.
Usually, a line is not terminated properly. For
example, MOV AX,BX,. This is a warning error.

R Relocation.
Illegal use of relocation in an expression, such as
abs-re1. Data, code, and COMMON areas are
re1ocatable.

U Undefined symbol.
A symbol referenced in an expression is not
defined. For some pseudo-ops, a V error is printed
for pass 1 then a U error for pass 2. Compare with
V error code definition below.

V Value error.
On pass 1 a pseudo-op which must have its value
known on pass 1 (for example, .RADIX, • PAGE, OS,
IF, IFE) has a value which is undefined. If the
symbol is defined later in the program, a U error
will not appear on the pass 2 listing.

ERROR MESSAGES

%No END statement

No END statement: either it is missing or it is
not parsed because it is in a false conditional,
unterminated IRP/IRPC/REPT block, or terminated
macro.

Unterminated conditional

At least one conditional is unterrninated at the end
of the file.

unterminated REPT/IRP/IRPC/MACRO

At least one block is unterrninated.

RUNNING MACRO-80 Page 5-17

Symbol table full

As MACRO-80 was building the symbol table, the
memory available was exhausted. The most usual
cause is a large number of macro blocks which also
contain statements for many of the statement lines.
Macro blocks are stored in the symbol table
verbatim, including the comments appended to the
lines inside the macro block. You should check all
macro blocks in the source program. To exclude
comments inside macro blocks from the symbol table,
precede these comments by double semicolons (::).
This method should free enough space to assemble
your program.

[xx] [No] Fatal errors [,xx warnings]

The number of fatal errors and warning errors
encountered in the program. The message is listed
at the end of every assembly on the terminal screen
and in the listing file. When the message appears,
the assembler has finished. When the message No
Fatal Errors appears, the assembly is complete and
successful.

CHAPTER 6

6.1
6.2
6.2.1
6.2.2

6.3

Contents

LINK-SO Linking Loader

Invoking LINK-SO 6-1
LINK-SO Commands 6-2

Filenames 6-3
Switches 6-4

Execute 6-6
Exit 6-S
Save 6-9
Address Setting
Library Search
Global Listing
Radix Setting
Special Code

Error Messages 6-19

6-11
6-15
6-16

6-17
6-1S

CHAPTER 6

LINK-SO LINKING LOADER

The .REL files which MACRO-SO creates are not executable.
To make a REL file executable, you need to load and link the
REL file with the LINK-SO linking loader. The result is an
executable object file.

Loading means physically placing the file in memory and
assigning absolute addresses to the code and data in place
of the relative addresses assigned by the assembler. This
is one of the required steps for converting a relocatable
(REL) file into an executable (COM) file.

Linking means that each loaded file (or module) that directs
program flow outside itself (by a CALL, an EXTERNAL symbol,
or an Incl.ud~J will be "linked" to the module that - co-nta-ins
the corresponding code.

LINK-SO can also save the assembled-and-linked program as an
executable object program on disk in a file with the
extension .COM. Consequently, any time you wish to run your
program, you need only insert the disk which contains your
COM file into an appropriate disk drive and "call" your
program a simple process of typing in the filename you
used to save the program, followed by a carriage return.

6.1 INVOKING LINK-SO

To invoke LINK-SO, enter:

LSO

The program file LSO.COM will be loaded. LINK-SO will
display an asterisk (*) to indicate that the linking loader
is ready to accept a command. The REL file(s) you want
link-loaded must be available in a disk drive. If you have
only one drive, you will need to swap diskettes in the drive
at each step of the link-loading process.

LINK-SO LINKING LOADER Page 6-2

6.2 LINK-SO COMMANDS

LINK-SO commands are filenames and switches.

You can enter your commands to LINK-SO one at a time; or,
you can enter all of your commands (including LSD) on one
line.

A command line has a flexible format, allowing you a number
of options for loading and linking files and for performing
other operations. The basic rule for LINK-SO commands is
that files are loaded in the order they are named, beginning
at the (default) address I03H under CP/M. Even though the
files will be loaded in the order entered, you do not have
to enter the files in the order. of execution. LINK-BO
places a jump instruction at address lOOH-I02H which jumps
to the start address of the first instruction to be
executed, regardless of its location in memory.

LINK-BO can perform about eleven different tasks. Even
though you could use them all, you will rarely use more than
three or four at a time.

When you enter a command to LINK-SO, LINK-SO returns an
asterisk (*) prompt that tells you to enter another command.
For example:

A>LSO<RETURN>
*/switch<RETURN>
*filename<RETURN>
*/switch<RETURN>
*filename/switch<RETURN>
*/E<RETURN> (to exit LINK-SO)

Note that all of the above lines may be entered as one line.
For example:

LBO /switch,filename/switch,filename/switch/E<RETURN>

This shows further the flexibility of the LINK-SO command
line.

Although entering each command on a separate line is slow
and tedious, the advantage is, especially if you are new to
a linking loader, that you know at all times what function
LINK-SO is performing.

LINK-BO LINKING LOADER Page 6-3

6.2.1 Filenames

Files processed by LINK-BO are REL files. A filename
commands LINK-BO to load the named file (also called a
module). If any file has been loaded already, a filename
also commands LINK-BO to link the loaded files as required.

Normally each linking session requires at least two
filenames. One filename directs LINK-BO which REL file to
load and link; the other commands LINK-BO to save the
executable code in a file with the specified name.

If you enter only one filename during the link session,
either the COM file will not be saved (in which case you may
have wasted your time), or LINK-SO will return the error
message

?NOTHING LOADED

Note, however, that if you enter only one filename followed
by the /G switch, the COM file will not be saved, but the
program will execute as soon as LINK-SO is finished loading
and linking. (Refer to the description of the switches in
the next section.)

You may enter as many filenames as will fit on one line.
The files named may be REL files in different languages
(BASIC-r- COBOL, FORTRA-N, or assembly) or runtime library REL
files for any of the high-level programming languages. (For
exact procedures for high-level language REL files, see the
product manual included with the high-level language
compiler.)

When LINK-SO is finished, the results are saved in the file
named by the programmer in the command line (the filename
followed by a IN -- see below, Section 6.2.2, Switches).
LINK-BO gives this filename the extension .COM.

A filename command in LINK-BO actually means a
specification. A file specification includes a
designation, a filename, and a filename extension.
format of a file specification is:

dev:filename.ext

file
device

The

LINK-BO defaults the dev: to the default or currently
logged disk drive. LINK-SO defaults the input filename
extension to .REL and the output filename extension to .COM.
You can alter the device designation to any applicable
output device supported by MACRO-BO and/or the filename
extension to any three characters by specifying a device or
a filename extension when you enter a filename command.

LINK-80 LINKING LOADER Page 6-4

6.2.2 Switches

Switches command LINK-SO to perform functions besides
loading and linking. Switches are letters preceded by slash
marks (/). You can place as many switches as you need in a
single command line, but each switch letter must be preceded
by a slash mark (/). For example, if you want to link and
load a program named NEIL, save an image of it on diskette,
then execute the program, you need two filenames and two
switches, so you would enter the commands:

NEIL,NEIL/N/G<RETURN>

LINK-80 saves a memory image on diskette (the /N switch),
then runs the NEIL program (the /G switch).

Some switches can be entered by themselves (/E, /G, /R, /P,
/D, /U, /M, /0, /H). Some switches must be appended to the
filename they affect (/N, /S). Some switches work only if
other switches are also entered during the LINK-80 session
(/X, /Y). Some switches must precede any filenames you want
affected (/P, /0). Some switches command actions that are
deferred until the end of the LINK-SO session (/N, /X, /Y).
Some switches command actions that take place when entered
(/S, /R -- a filename entered without a switch appended acts
this way, too). These "rules of behavior" should be kept in
mind when entering LINK-SO commands. See the descriptions
for each switch for full details of its action.

The chart below summarizes the switches by function. Full
descriptions of the switches by function follow the chart.

BE CAREFUL: Do not confuse the LINK-SO switches with the
MACRO-SO switches.

LINK-80 LINKING LOADER

FUNCTION

Execute

Exit

Save

Address
Setting

Library
Search

Global
Listing

Radix
Setting

Special
Code

SWITCH

IG

IG:Name

IE
IE:Name

IN

IN:P

IP

10

IR

IS

IU

1M

10

IH

IX

IY

Page 6-5

ACTION

Execute .COM file then exit to
operating system.
Set .COM file start address
equal to value of Name, execute
.COM file, then exit to
operating system.

Exit to operating system.
Set .COM file start address
equal to value of Name, then
exit to operating system.

Save all previously loaded
programs and subroutines using
filename immediately preceding
IN.
Alternate form of /N; save
only program area.

Set start
and data.
sets only
Set start

address for programs
If used with ID, IP

the program start.
address for data area

only.
Reset LINK-SO.

Search the library named
immediately preceding IS.

List undefined globals.

List complete global reference
map.

Octal radix.

Hexadecimal radix (default).

Save "COM" file in Intel ASCII
Hex format. Requires IN
switch. Gives nCOM" file the
extension .HEX.
Creates a special
with SID/ZSID
Requires IN and
Gives special
extension .SYM.

file for use
debugger.

IE switches.
file the

Figure 6.1: Table of LINK-80 Switches

LINK-80 LINKING LOADER Page 6-6

At least two switches will probably be used in every linking
session. These switches belong to the first three functions
-- Execute, Exit, and Save.

EXECUTE

Switch

/G

Action

The /G switch causes LINK-aO to load the
filename(s} entered in the command line, to link
the program(s} together, then to execute the
link-loaded program. After the program run, your
computer returns to operating system command
level. For example,

L80 NEIL,NEIL/N/G

links NEIL.REL, saves the result in
named NEIL.COM, then exits to
system.

a disk file
the operating

Execution takes place as soon as the command line
has been interpreted. Just before execution
begins, LINK-aD prints three numbers and a BEGIN
EXECUTION message. These three numbers can be
very useful to you in developing future assembly
language programs. The first number is the start
address of the program. The second number is the
address of the next available byte; that is, the
end address plus one byte. The third number is
the number of 256-byte pages taken up by the
program (the difference between the start address
and the end address converted to 256-byte pages).

If you do not want to save the .COM file, use the
/G switch and enter only one filename on the
command line. For example:

Lao NEIL/G

But Remember: No COM file is created (since you
did not include /N). To run the program again,
you will have to run LINK-80 again.

LINK-SO LINKING LOADER Page 6-7

/G:<name> The /G:<name> switch performs exactly like the
plain /G switch but with one additional feature.
<name> is a global symbol which was defined
previously in one of the modules which is being
linked and loaded. When LINK-80 sees <name>, it
uses <name> as the start of the program and loads
the address of the line with <name> as its LABEL
into the jump instruction at lOOH-102H.

The value of this switch (and of /E:<name> below)
is the ability to tell LINK-SO where to start
execution when the assembled modules do not make
this clear. Usually this is no problem because
you link in a high-level language program (which
LINK-SO takes as the main program by default), or
you link only assembly language modules and only
one has an END <name> statement to signal LINK-SO
which assembly language program to execute first.
But if two or more assembly language modules
contain an END <name> statement, or if none of the
assembly language modules contain an END <name>
statement, then /G:<name> tells LINK-SO to use
this module as the starting point for execution.

Programmers who
language module
program should use
the beginning of
·to cause execution
before execution
program.

want to execute an assembly
before a high-level language
a CALL or INCLUDE statement at
the high-level language program
of the. -assembly laoguag.emodule

of the high-level language

LINK-SO LINKING LOADER Page 6-S

EXIT

Switch

/E

Action

Use /E to link and load a program and perform some
other functions on the files (for example, save it
on a diskette) when you do not want to run the
program at this time. When LINK-SO has finished
the tasks, it will exit to the operating system.

(The /G switch is the only other switch which
exits LINK-SO.)

When linking is finished,
numbers: start address,
number of 256-byte pages.

LINK-SO outputs
next available

three
byte,

/E:<name> The /E:<name> switch performs exactly like the
plain /E switch but with one additional feature.
<name> is a global symbol which was defined
previously in one of the modules which is being
linked and loaded. When LINK-SO sees <name>, it
uses <name> as the start of the program and loads
the address of the line with <name> as the LABEL
into the jump instruction at lOOH-102H.

The value of this switch (and of /G:<name> above)
is the ability to tell LINK-SO where to start
execution when the assembled modules do not make
this clear. Usually this is no problem because
you link in a high-level language program (which
LINK-SO takes as the main program by default), or
you link only assembly language modules and only
one has an END <name> statement to signal LINK-SO
which assembly language program to execute first.
But if two or more assembly language modules
contain an END <name> statement, or if none of the
assembly language modules contain an END <name>
statement, then /E:<name> tells LINK-SO to use
this module as the starting point for execution.

Programmers who want to execute an assembly
language module before a high-level language
program should use a CALL or INCLUDE statement at
the beginning of the high-level language program
to cause this order of execution.

LINK-BO LINKING LOADER Page 6-9

SAVE

Switch

IN

Action

The IN switch causes the assembled-linked program
to be saved in a disk file. It is important that
a filename always be specified for the IN switch.
If you do not specify an extension, the default
extension for the saved file is .COM. The COM
filename will be the name the programmer appends
the IN switch to. The IN switch must immediately
follow the filename under which you wish to save
the results of the link-load session.

The IN switch does not take effect unless a IE or
IG switch follows it.

The most common error programmers make with the IN
switch is to forget that they must specify at
least two filenames; one as the file to be linked
and another one as the name for the file to be
saved. Therefore, at a minimum the command line
should include:

Lao NEIL,NEIL/N/G

The first filename NEIL is the file to be loaded
and linked; the second filename NEIL is the name
for the COM file that will save the result of the
link-loading session.

It is, of course, possible to specify filenames in
any order. For example:

LBO NEIL/N,ASMSUBl,ASMSUB2,BASPROG/G

Here LINK-SO will load and link the files BASPROG,
ASMSUBl, and ASMSUB2; then save the result in the
file named NEIL.

From these two examples, it is possible to see
that the filename followed by the IN save switch
is not loaded; it is only a specification for an
output file; you must also always name at least
one input file, too.

You will use this switch almost every time you
link a REL file because there is no other way to
save the result of a link-load session and because
not saving the result means you would have to link
load again to run your program.

Once saved on disk, you need only type the COM
filename at operating system command level to run
the program.

LINK-SO LINKING LOADER Page 6-10

IN:P By default, LINK-SO saves both the program and
data areas in the COM file. If you wish to save
only the program area to make your disk files
smaller, use the IN switch in the form /N:P. With
this switch set, only the program code will be
saved.

Two of these switches (IN plus either a /G or a /E type) are
all the switches required for most LINK-SO operations. Some
additional functions are available through the use of other
switches which allow programmers to manipulate the LINK-SO
processes in more detail. The switches which turn on these
additional functions are arranged in categories according to
type of function. The function of each category is defined
by the category name.

LINK-SO LINKING LOADER Page 6-11

ADDRESS SETTING

Switch

IP

Action

The IP switch is used to set both the program and
data orlgln. If you do not enter the IP switch,
LINK-SO performs this task automatically, using a
default address for both program and data. (103H
for CP/M)

The format of the IP switch is:

IP:<address>,

The address value must be expressed in the current
radix. The default radix is hexadecimal.

The IP switch is designed to allow you to place
program (or code) segments at addresses other than
the default. The default value for the IP switch
is l03H.

REMEMBER: The IP switch takes effect as soon as
it is seen, but it does not affect files already
loaded. So be sure to place the IP switch before
any files you want to load starting at the
specified address. The IP switch and 10 switch,
when tl-s-ed,me-s--tbe -s-ep-arate-a fromtheREL --f ilename
by a comma. For example,

Lao IP:103,NEIL,NEIL/N/E

The IP switch affects primarily the CSEG code in
your assembly language program. If IP is given
but not ID, both data and program (CSEG and OSEG)
areas will be loaded starting at the IP:<address>.
05EG (and any COMMON areas) will be loaded first.
If both IP and 10 switches are given, IP sets the
start of the CSEG area only. Normally, unless
your programs are all CSEG, you will use IP and ID
together.

Note especially that ASEG areas are not affected
by the IP switch. So be careful to set the IP
address outside any ASEG areas unless you want the
program or data areas to write over the A5EG
areas.

You may enter more than one IP switch during a
single link session to place different program
(code) segments at addresses which are not end to
end. LINK-SO will automatically place one program
segment (CSEG) after the next. You can cause
space to be left between modules. However, some

LINK-80 LINKING LOADER Page 6-12

restrictions one the placement of modules apply:

1. Be sure that program areas do not overlay one
another. LINK-SO returns a warning error
message if they do.

2. Be sure that
by data or
200H, a DSEG
is illegal.
this case.

the program areas are not split
COMMON areas; that is, a CSEG at
at 300H, and another CSEG at 400H

LINK-SO returns a fatal error in

When the loading session is all done, LINK-BO
wants to see a segment of memory loaded with data
and COMMON and another segment loaded with program
code. The code segments may have gaps between the
modules as long as a data segment is not loaded
between the start of the first code segment module
and the end of the last code segment module, and
vice versa. So, p'lacing DSEG modules at
l03H-IlSH, lSOH-165H, 170H-175H, and CSEG modules
at 200H-2S0H, 300H-350H, 400H-450H is acceptable.
LINK and SO will show Data between l03H and 17SH
and Program between 200H and 4S0H.

Note that any gaps you leave may contain data or
program code from a previous program. LINK-BO
does not initialize gaps to zero or null. This
could cause unpredictable results.

/0 The /0 switch sets the origin for OSEG and COMMON
areas. If you do not enter the /D switch, LINK-SO
performs this task automatically, using a default
address for both data and program. (103H for
CP/M)

The format for the /D switch is:

/D:<address>,

The address for the /D switch must be in the
current radix. The default radix is hexadecimal.

The /D switch is designed to allow you to place
data and COMMON segments at addresses other than
the default. The default value for the /0 switch
is 103H. The /D switch must be separated from the
REL filenames by a comma. For example,

LBO /D:I03,NEIL,NEIL/N/E

When the /P switch is used with the /D switch,
data and common areas load starting at the address
given with the /D switch. (The program will be

LINK-80 LINKING LOADER Page 6-13

loaded beginning at the program origin given with
the /P switch.) This is the only occasion when the
address given in /P: is the start address for the
actual program code.

REMEMBER: The /D switch takes effect as soon as
LINK-SO "sees" the switch, so the /D switch has no
effect on programs or data already loaded.
Therefore, it is important to place the /D switch
(as well as the /P switch) before the files you
want to load starting at the address specified.

You may enter more than one /D switch during a
single link session to place different program
(code) segments at addresses which are not end to
end. LINK-80 will automatically place one data
segment (DSEG) after the next. You can cause
space to be left between modules. However, some
restrictions on the placement of modules apply:

1. Be sure that data areas do not overlay one
another. LINK-80 returns a warning error
message if they do.

2. Be sure that the data areas are not split by
program areas; that is, a DSEG at 200H, a
CSEG at 300H, and another DSEG at 400H is
illegal. LINK-SO returns a fatal error in
thi~ case.

When the loading session is all done, LINK-SO
wants to see a segment of memory loaded with data
and COMMON and another segment loaded with program
code. The data segments may have gaps between the
modules as long as a program segment is not loaded
between the start of the first data segment module
and the end of the last data segment module, and
vice versa. So, placing DSEG modules at
I03H-IISH, ISOH-165H, 170H-175H, and CSEG modules
at 200H-250H, 300H-3S0H, 400H-4S0H is acceptable.
LINK and 80 will show Data between l03H and l75H
and Program between 200H and 450H.

Note that any gaps you leave may contain data or
program code from a previous program. LINK-SO
does not initialize gaps to zero or null. This
could cause unpredictable results.

LINK-SO LINKING LOADER Page 6-14

ADDITIONAL NOTE FOR /P AND /D SWITCHES

If your program is too large for the loader, you
will sometimes be able to load it anyway if you
use /D and /P together. This way you will be able
to load programs and data of a larger combined
total. While LINK-SO is loading and linking, it
builds a table consisting of five bytes for each
program relative reference. By setting both /D
and /P, you eliminate the need for LINK-SO to
build this table, thus giving you some extra
memory to work with.

To set the two switches, look to the end of the
List file. Take the address you decided for the
/D switch (where you want the DSEG to start
loading), add the number for the total of data,
add that number to I03H, add another lOOH+l, and
the result should be the /P: address for the
start of the program area. The /D switch should
be set at l03H or higher (D:103).

/R The /R switch "resets" LINK-SO to its initialized
condition. LINK-SO scans the command line before
it begins the functions commanded. As soon as
LINK-SO sees the /R switch, all files loaded are
ignored, LINK-SO resets itself, and the asterisk
(*) prompt is returned showing that LINK-SO is
running and waiting for you to enter a command
line.

LINK-80 LINKING LOADER Page 6-15

LIBRARY SEARCH

Switch

IS

Action

The IS switch causes LINK-80 to search the file
named immediately prior to the switch for
routines, subroutines, definitions for globals,
and so on. In a command line, the filename with
the IS switch appended must be separated from the
rest of the command line by commas. For example:

L80 NEIL/N,MYLIB/S,NEIL/G

The IS switch is used to search library files
only, including a library you constructed, using
the LIB-80 Library Manager (see Chapter 8).

LINK-SO LINKING LOADER Page 6-16

GLOBAL LISTING

Switch

/U

Action

The IU switch tells LINK-80 to list all undefined
globals. The IU works only in command lines that
do not include either a /G or a IE switch. Note
that if your program contains any undefined
globals, LINK-SO lists them automatically, unless
the command line also contains a IS (library
search) switch. In these cases, enter only the IU
switch, and the list of undefined globals will be
listed. Use CTRL-S to suspend the listing if you
want to study a portion of the list that would
scroll off the screen. Use CTRL-Q to restart the
listing.

The various runtime libraries provide definitions
for the globals you need to run your high-level
language programs.

In addition to listing undefined globals, the IU
switch directs LINK-SO to list the origin, end,
and size of the program and data areas. These
areas are listed as one lump area unless both the
IP and ID switches are set. If both IP and ID are
set, the start, end, and size of both areas are
listed separately.

1M The 1M switch directs LINK-SO to list all globals,
both defined and undefined, on the screen. The
listing cannot be sent to a printer. In the
listing, defined globals are followed by their
values, and undefined globals are followed by an
asterisk (*).

In addition to listing all globals, the 1M switch
directs LINK-SO to list the origin, end, and size
of the program and data areas. These areas are
listed as one lump area unless both the IP and ID
switches are set. If both IP and ID are set, the
start, end, and size of both areas are listed
separately.

LINK-80 LINKING LOADER Page 6-17

RADIX SETTING

Switch

/0

/H

Action

The /0 switch sets the current radix to Octal. If
you have a reason to use octal values in your
program, give the /0 switch in the command line.
If you can think of no reason to switch to octal
radix, then there is no reason to use this switch.

The /H switch resets the current radix to
Hexadecimal. Hexadecimal is the default radix.
You do not need to give this switch in the command
line unless you previously gave the /0 switch and
now want to return to hexadecimal.

LINK-80 LINKING LOADER Page 6-18

SPECIAL CODE

Switch

IX

Action

The IX switch saves the "COM" file in Intel ASCII
HEX format. The IX switch requires the IN switch
appended to the same filename as the IX. For
example:

Lao NEIL,NEIL/X/N/E

The file that is saved with the IX switch set is
given the filename extension .HEX.

The primary use of the IX switch is to prepare
programs to be burned into PROMs. The hex format
was originally developed to facilitate the
movement of programs from one machine to another.
The hex format provides more code checking than
object code does. Also, a HEX file can be edited
with some sophisticated line editors.

IY The IY switch saves a file in a special format for
use with Digital Research's Symbolic Debuggers,
SID and ZSID. The IY switch requires the IN and
the IE (not~) switches be given in the command
line. For example:

Lao NEIL,NEIL/Y/N/E

The file that is saved with the IY switch set is
given the filename extension .SYM. A COM file
will also be saved. So the sample command line
above creates both NEIL.COM and NEIL.SYM.

The SYM file contains the names and addresses of
all globals, which allows you to use Digital
Research's Symbolic Debuggers SID and ZSID with
the SYM file.

LINK-80 LINKING LOADER Page 6-19

6.3 ERROR MESSAGES

Errors encountered during the running of LINK-80 will return
messages, most preceded by either the symbol? or the
symbol %. No error codes are returned, so once you
understand the meaning of the message, error recognition
should be easy.

?No Start Address

The /G switch was issued, but no main program has
been loaded.

?Loading Error

The last file given for input was not a properly
formatted LINK-80 object file.

?Out of Memory

Not enough memory to load the module.

?Command Error

-Ynre-cognizabl-e ---LINK-80···command.

?<filename> Not Found

<filename>, as given in the command string, did not
exist.

?Start Symbol - <name> - Undefined

The /E:Name or /G:Name switch was given, but the
Name specified was not defined.

LINK-80 LINKING LOADER Page 6-20

?Nothing Loaded

A <filename>/S or /E or /G was given, but no object
file was loaded. That is, an attempt was made to
search a library, to exit LINK-80, or to execute a
program, when in fact nothing had been loaded. For
example:

TEST/N/E

Results in "?Nothing Loaded" because TEST/N names
TEST.COM, but does not load TEST.REL.

To load a file, enter the filename. To save a
file, enter a filename followed by the /N switch
and either a /E or a /G switch. For example, any
of the following sets of commands should work:

Lao NEIL,NEIL/N/E

or

L80
*NEIL
*NEIL/N/E

or

Lao NEIL/N,NEIL/E

?Can't Save Object File

A disk error occurred when the file was being
saved. Usually, this means that the disk is full
or that it is write-protected.

%2nd COMMON larger /XXXXXX/

When loading modules which include COMMON blocks,
LINK-80 takes the size of the first COMMON block
loaded to set the amount of memory needed before
program code is loaded. If a subsequent module
contains a COMMON block larger than the first one
loaded, LINK-80 returns this error message. It
means that the first definition of the COMMON block
/XXXXXX/ encountered in the modules loaded was not
the largest block defined with that name. Reorder
module loading sequence or change COMMON block
definitions so that all blocks are the same size.

LINK-BO LINKING LOADER Page 6-21

%Mult. Def. Global YYYYYY

You have one global (PUBLIC) symbol name YYYYYY
with more than one definition. Usually, two or
more of the modules being loaded have declared the
same symbol name as PUBLIC.

%Overlaying Program Area ,Start = xxxx
,Public = <symbol name> (xxxx)
,External = <symbol name> (xxxx)

Usually this occurs when either /D or /P is set to
an address inside the area taken by LINK-BO. You
should reset the switch address above l02H. It may
also occur if you set addresses for programs loaded
after some initial programs were loaded and the
addresses were not set high enough. For example,
if MYPROG is larger than 147 bytes and you enter
the commands:

MYPROG,/P:l50,SUBR1,FUNNY/N/E

you will receive the %Overlaying Program Area error
message.

%Overlaying Data Area ,Start = xxxx
,Public = <symbol name> (xxxx)
,External = <symbol name> (xxxx)

The /D and /P switches were set too close together.
For example, if /D was given a higher address than
/P but not high enough to be beyond the end of the
program area, when the program is loaded, the top
end will be laid over the data area. Or, if /D is
lower than /P, /P was not high enough to prevent
the beginning of the program from starting in the
area already loaded with data.

?Intersecting Program Area
or

?Intersecting Data Area

The program and data areas intersect and an address
or external chain entry is in this intersection.
The final value cannot be converted to a current
value since it is in the area intersection.

LINK-ao LINKING LOADER

Origin Above Loader Memory, Move Anyway (Y or N)?
or

Origin Below Loader Memory, Move Anyway (Y or N)?

Page 6-22

This message will appear only after either the /E
or the /G switch command was given to LINK-aO. If
LINK-aO has not enough memory to load a module but
a /E or /G has not been entered, you will receive
the ?Out of Memory message.

LINK-SO can load modules only between its first
address in memory and the top of available memory.
If the program is too large for this space or if
you set a /D and/or /P switch too high for the size
of your program, LINK-aO runs out of memory and
returns the Origin Above Loader Memory message.

If you set a /D and/or /P switch below the first
address of LINK-SO (lOOH for CP/M), LINK-SO returns
the Origin Below Loader Memory message. This
prevents you from loading your program into memory
designated for the operating system.

If a Y<CR> is given, LINK-SO will move the area and
continue. If anything else is given, LINK-SO will
exit. In either case, if the /N switch was given,
the image will already have been saved.

Contents

Chapter 7 CREF-80 Cross Reference Facility

7.1 Creating a CREF Listing 7-1
Creating a Cross Reference File 7-2
Generating a Cross Reference Listing 7-2

7.2 CREF Listing Control Pseudo-ops 7-3

CHAPTER 7

CREF-SO CROSS REFERENCE FACILITY

A cross reference facility processes a specially assembled
listing file to list the locations of all intermodule
references and the locations of their definitions. The
result is a cross reference listing. This cross reference
listing can be used to aid debugging your program.

The CREF-SO Cross Reference Facility allows a programmer to
process the cross reference file generated by MACRO-SO.
This cross reference file contains embedded control
characters, set up during MACRO-BO assembly. CREF-SO
interprets the control characters and generates a file that
lists cross references among variables.

CR~F-~_Q._.!?~Qgqc:e§g lj. .. $ting_~ __ I:'~$~Jllblj.ngt:h~ PRN list:iJ19. of
MACRO-SO, with two additional features:

1. Each source statement is numbered with a cross
reference number.

2. At the end of the listing, variable names appear in
alphabetic order. Each name is followed by the
line number where the variable is defined (flagged
with #) followed by the numbers of other lines
where the variable is referenced.

The CREF listing file replaces the MACRO-SO PRN List file
and receives the filename extension .LST instead of .PRN.

7.1 CREATING A CREF LISTING

Creating a CREF listing involves two steps: (1) creating a
cross reference file (.CRF), and (2) generating a cross
reference listing (.LST). The first step occurs in the
MACRO-SO macro assembler; the second in the CREF-SO Cross
Reference Facility.

CREF-80 CROSS REFERENCE FACILITY Page 7-2

Creating ~ Cross Reference File

To create a cross reference file, set the IC switch in the
MACRO-aD command line. For example:

M80 =NEIL/C

This command line assembles the file NEIL.MAC, generating
the output files NEIL.REL (object file) and NEIL.CRF (cross
reference file).

Generating ~ Cross Reference Listing

The cross reference listing is generated by running the .CRF
file through CREF-80.

To invoke the cross reference facility, enter:

CREF80

CREF-80 will return an asterisk (*) prompt.

To create the cross reference listing file, enter:

=filename

where filename is the name of your .CRF file. For example:

CREF80 =NEIL

will generate a .LST file (NEIL.LST) containing the cross
reference information.

This .LST file can be printed or sent to the terminal screen
using operating system commands. Additionally, CREF-80
supports the same output device designations as MACRO-80.
Simply enter the device designation in front of the
filename. For example:

CREF80 LST:=NEIL

sends the .LST listing to the printer only (no disk file is
generated).

CREF80 TTY:=NEIL

sends the .LST listing to the CRT only (no disk file is
generated).

CREF-80 CROSS REFERENCE FACILITY Page 7-3

You will need to give a drive designation if you want the
.LST file saved elsewhere than the currently logged drive
(where the .CRF file resides). For example:

CREF80 B:=A:NEIL

saves NEIL.LST on drive B.

When finished, CREF-80 prompts with an asterisk. You may
enter another =filename, or exit from CREF-80 to the
operating system.

To exit CREF-80, enter:

CTRL-C

If you want the .LST file named differently from the default
(.CRF filename and extension .LST), enter the name in front
of the equal sign. For example:

CREF80 NEIL.CRL=NEIL
or CREF80 NEILCREF=NEIL

The former command line generates a
file named NEIL.CRLi the latter
NEILCREF.LST.

cross reference list
generates a file named

Look at the filename extensions to distinguish a cross
reference listing file from the listing file MACRO-80
normally generates. The listing file MACRO-80 normally
generates (without the IC switch set in the command line)
receives the default filename extension .PRN. The cross
reference listing file generated by CREF-80 receives the
default filename extension .LST.

7.2 CREF LISTING CONTROL PSEUDO-OPS

You may want the option of generating a cross reference
listing for part of a program but not all of it. To control
the listing or suppressing of cross references, use the
cross reference listing control pseudo-ops, .CREF and
.XCREF, in the source file for MACRO-80. These two
pseudo-ops may be entered at any point in the program in the
OPERATOR field. Like the other listing control pseudo-ops,
.CREF and .XCREF support no ARGUMENTs.

CREF-BO CROSS REFERENCE FACILITY Page 7-4

Pseudo-op

. CREF

. XCREF

Definition

Create cross references •
.CREF is the default condition. Use .CREF to
restart the creation of a cross reference file
after using the .XCREF pseudo-oPe .CREF
remains in effect until MACRO-BO encounters
.XCREF. Note, however, that .CREF has no
effect until the IC switch is set in the
MACRO-BO command line.

Suppress cross references •
.XCREF turns off the .CREF (default) pseudo-oPe
.XCREF remains in effect until MACRO-BO
encounters .CREF. Use .XCREF to suppress the
creation of cross references in selected
portions of the file. Because neither .CREF
nor .XCREF takes effect until the IC switch is
set in the MACRO-BO command line, there is no
need to use .XCREF if you want the usual List
file (one without cross references); simply
omit IC from the MACRO-80 command line.

CHAPTER S

LIB-SO LIBRARY MANAGER

WARNING

Read this chapter carefully
and make a back-up copy of
your libraries before using
LIB-SO. LIB-SO is very
powerful and thus can be very
destructive. It is easy to
destroy a library with LIB-SO.

LIB-SO is designed as a runtime library manager for CP/M
versions of Microsoft FORTRAN-SO and COBOL-SO. LIB-SO may
also be used to create your own library of assembly language
subroutines.

LIB-SO creates runtime libraries from assembly language
programs that are subroutines to COBOL, FORTRAN, and other
assembly language programs. The programs collected by
LIB-SO may be special modules created by the programmer or
modules from an existing library (FORLIB, for example).
With LIB-SO, you can build specialized runtime libraries for
whatever execution requirements you design.

The value of building a library is that all the routines
needed to execute a program can be linked with it into an
executable object (COM) file by entering the library name
followed by /S in a LINK-SO command line. For example:

LSO MAIN,NEWLIB/S,NEIL/N/G

This is much more convenient than entering the necessary
subroutines individually, especially if there are many
modules. With a library file you can be sure all the
necessary modules will be linked into the COM file, plus
there is no danger of running out of space on the LINK-SO

LIB-SO LIBRARY MANAGER Page S-2

command line. Additionally, the library makes this special
collection of subroutines available for easy linking into
any program.

S.l SAMPLE LIB-SO SESSION

The two most common uses you will have for LIB-SO are
building a library and listing a library. The following
sample sessions illustrate the basic commands for these two
uses.

BUILDING A LIBRARY:

A>LIB
*TRANLIB=SIN,COS , TAN , ATAN , ACOG
*EXP
*/E
A>

In this sample session, LIB invokes LIB-SO, which
returns an asterisk (*) prompt. TRANLIB is the
name of the library being created.
SIN ,COS, TAN,ATAN , ACOG are filenames to be
concatenated into TRANLIB. EXP is another filename
to be concatenated into TRANLIB. (EXP could be
listed on the previous command line; this example
shows files entered singly and multiply.) /E causes
LIB-BO to rename TRANLIB.LIB to TRANLIB.REL then to
exit to CP/M.

LISTING A LIBRARY:

A>LIB
*TRANLIB.LIB/U
*TRANLIB.LIB/L

(List of symbols in TRANLIB.LIB)

*CTRL-C
A>

In this sample session, LIB invokes LIB-SO.
TRANLIB.LIB/U tells LIB-SO to search ~RANLIB.LIB
for any intermodule references that would not be
defined during a single pass through the library

LIB-BO LIBRARY MANAGER Page B-3

(that is, any "backward" referencing symbols).
TRANLIB.LIB/L directs LIB-BO to list the modules in
TRANLIB.LIB and the symbol definitions the modules
contain. CTRL-C exits to CP/M without destroying
any files.

WARNING

IE will destroy your current library if
there is no new library under construction.
This is a special danger to your FORTRAN
runtime library FORLIB.REL. IF YOU ARE
ONLY LISTING THE LIBRARY AND NOT REVISING
IT, EXIT LIB-BO USING--- CTRL-C.

B.2 LIB-BO COMMANDS

Invoking LIB-BO

To invoke LIB-BO, enter:

LIB

LIB-BO will return an asterisk (*) prompt, indicating ready
to accept commands. Each command in LIB-BO adds modules to
the library under construction.

Commands to LIB-aO consist of an optional Destination field,
a Source field, and an optional Switch field.

The format of a LIB-80 command is:

Destination=Source/Switch

Each field is described below. The general format for each
field is shown in parentheses after the field name.

LIB-SO LIBRARY ~ANAGER Page S-4

Destination field (filename=)

This field is optional. The equal sign is required if any
entry is made in this field.

Enter in this field the filename (and extension, if you
choose) for the library file you want to create.

If this field is omitted, LIB-SO defaults to the filename
FORLIB. The default filename extension is .REL.

WARNING

Do not confuse this default
filename FORLIB.LIB with
FORLIB.REL, the runtime library
supplied with FORTRAN-SO. These
two libraries will not be the
same unless you command LIB-SO
to copy all the files.from the
FORTRAN runtime library to the
new library. Furthermore, when
you exit LIB-SO, the default
library name will be given the
filename extension .REL, which
means that it replaces the
FORLIB.REL supplied with
FORTRAN-SO. For this reason,
unless you want your FORTRAN-SO
runtime library destroyed, we
recommend emphatically that you
always specify a Destination
filename when creating a new
library.

LIB-80 LIBRARY MANAGER Page 8-5

Source field (filename<module»

Some entry is required in this field. All Source files must
be REL files.

Source field entries tell LIB-SO which files or parts of
files (modules) you want added to the destination library
file. You have two choices for entries:

1. Filename(s) only

2. Any combination of filename(s) and module name(s)

The following syntax rules apply:

1. If a command consists of filenames only, the
entries are separated by commas only. For example:

FILEl,FILE2,FILE3

2. If a command consists of filenames and module
names, the module names must be enclosed in angle
brackets «». Modules follow the filename where
they are found. Each filename<rnodule name>
combination is separated from other command line
entries by commas. For example:

FILEl,FILE2<MODZ>,FILE3<MODR>,FILE4

3. If more than one module is named from the same
file, the module names, enclosed in angle brackets
«», must be separated from each other by commas.
For example:

FILEl,FILE2<MODZ,MODR>,FILE3

See Additional Details about Source Modules, option
2, below.

Files and modules are typically FORTRAN or COBOL subprograms
or main programs, or ALDS assembly language programs that
contain ENTRY, GLOBAL, or PUBLIC statements. (These
statements are called entry points.) LIB-SO recognizes a
module by its program name, which may be a filename, or a
name given by either the .TITLE or the NAME pseudo-op in
MACRO-BO. All Source files must be REL files.

LIB-SO concatenates REL files and modules of REL files;
that is, LIB-SO strings one file or module after the other.

LIB-80 LIBRARY MANAGER Page 8-6

So there is no difference between the command under syntax
rule 2 above and

FILEI
FILE2<MODZ>
FILE3<MODR>
FILE4

Also, because the library file is built by concatenation, it
is important to order the modules so that all intermodule
references are "forward." That is, the module containing the
external reference should physically appear ahead of the
module containing the ENTRY point (the definition) •
Otherwise, when you direct LINK-80 to search the library,
LINK-80 may not satisfy all references on a single pass
through the library.

Additional Details about Source Modules

To extract modules from previous libraries and other REL
files, LIB-80 uses a powerful syntax to specify ranges of
modules within a REL file.

These ranges may be from one module to the entire file (in
which case no module specification is given).

The basic principle of specifying a range
generally, that any module named in a
included. (There is an exception, when
relative offset range--item 6, below.)

The options for specifying modules are:

1. One module only

of modules is,
command will be

specifying a

Enter the module name. For example:

FILEl<MODZ>

includes only module MODZ of FILEI.

2. Several discontiguous modules from one file
Enter the module names separated by commas.
For example:

FILEI<MODZ,MODR,MODK>

includes modules MODZ, MODR, and MODK. Note
that these modules may be given in any order
you need them concantenated for a proper
one-pass search, regardless of their order in
the original file.

LIB-BO LIBRARY MANAGER Page 8-7

3. From the first module through the named module
Enter two periods (.•) and the name of the last
module to be included. For example:

FILEI< .• MODK>

includes all modules from the first module in
FILEI through module MODK.

4. From a named module through the last module
Enter the name of the module that starts the
range followed by two periods (.•). For
example:

FILEI<MODR •• >

includes all the modules, beginning with module
MOOR, through the last module in FILEI.

5. From one named module through another named module
Enter the name of the module that starts the
range followed by two periods (.•) followed by
the name of the module that ends the range.
For example:

FILEI<MODZ •. MODK>

includes all modules, beginning with module
MODZ, through module MODK.

6. Relative offset range
Enter the module name followed by a + or - and
the number of modules to be included. + means
following the named module. - means preceding
the named module. The named module is not
included in the library. The offset number
must be an integer in the range I to 255. For
example:

FILEI<MODZ+2>

includes the two modules immediately following
module MODZ. While

FILEI<MODK-3>

includes the three
preceding module MODK.

modules immediately

LIB-80 LIBRARY MANAGER Page 8-8

Additionally, ranges and offsets may be used
together. For example:

FILEI<MOOR+I •• MOOK-I>

includes all the modules between module MOOR
and module MOOK (but neither MODR nor MODK is
included) •

7. All modules in a file
Enter the filename only. For example:

FILEI

includes the entire file (all modules in
FILEI) .

Switch field (/switch)

An entry in the Switch field commands LIB-SO to perform
additional functions. A Switch field entry is a letter
preceded by a slash mark (/).

WARNING

IE will destroy your current
library if there is no new
library under construction.
This is a special danger to
your FORTRAN runtime library
FORLIB.REL because FORLIB is
the default filename used if
you do not specify a
destination filename.
Therefore, unless you want to
delete your complete FORTRAN
runtime library, give LIB-80 a
destination filename for the
new library. If you are only
listing the library and not
revising it, exit LIB-80 using
CTRL-C.

LIB-SO LIBRARY MANAGER Page 8-9

Switch

/E

Action

Exit to CP/M. If you
library or revlsing
CTRL-C instead of /E.

are not creating a
an existing library,

new
use

The library under construction (.LIB) is renamed
to .REL and any previous copy of the library file
is deleted. This is why /E is so dangerous and
not to be used unless you are constructing a new
library. Again, we recommend emphatically that
you always enter a filename in the Destination
field of the LIB-SO command line.

/R Rename the library currently being built (.LIB) to
.REL. The ~ warnings and cautions apply to /R
as apply to /E.

The previous copy of the library is deleted. Use
/R only if you are building a new library. /R
performs the same functions as /E, but does not
exit to CP/M on completion. Use /R instead of /E
when you want to exit the current library but want
to continue using LIB-80 for other library
managing.

/L List the modules in the file specified and the
symbol definitions the modules contain. The
contents of a file are listed in cross reference
format.

Listings are currently always
terminal; use CTRL-P before
send the listing to the printer.

sent to the
running LIB-80 to

/U Use /U to list the symbols which could be
undefined in a single pass through a library. If
a symbol in a library module refers "backward" (to
a preceding module), /U will list that symbol.

/C Use /C to clear commands from LIB-80 without
exiting the LIB-SO program. The library under
construction is deleted and the LIB-SO session
starts over. The asterisk (*) prompt will appear.

Use /C if you specified the wrong module(s) or the
wrong order and want to start over with new LIB-SO
commands.

LIB-80 LIBRARY MANAGER Page 8-10

/0 Use /0 to set typeout mode to Octal radix. /0
will be given together with the /L switch, which
commands LIB-80 to list. REMEMBER: When switches
are given together, a slash must precede each
switch. For example:

NEWLIB/L/O

/H Use /H to set typeout mode to Hexadecimal radix.
Hexadecimal is the default radix.

APPENDIX A

Compatibility with Other Assemblers

The $EJECT and $TITLE controls are provided for
compatability with Intel's ISIS assembler. The dollar sign
must appear in column 1 only if spaces or tabs separate the
dollar sign from the control word. The control word

$EJECT

is the same as the MACRO-BO PAGE pseudo-oPe

The control word

$TITLE (, text')

is the same as the MACRO-BO SUBTTL <i;~xt> pseudo-oPe

The Intel operands PAGE and INPAGE generate Q errors when
used with the MACRO-SO CSEG or DSEG pseudo-ops. These
errors are warnings; the assembler ignores the operands.

When MACRO-80 is invoked, the default for the origin is Code
Relative O. With the Intel ISIS assembler, the default is
Absolute O.

with MACRO-SO, the dollar sign ($) is a defined constant
that indicates the value of the location counter at the
start of the statement. Other assemblers may use a decimal
point or an asterisk. Other constants are defined by
MACRO-SO to have the following values:

A=7
H=4

B=O
L=5

C=l
M=6

D=2
SP=6

E=3
PSW=6

APPENDIX B

The Utility Software Package with TEKDOS

The command formats for MACRO-BO, LINK-BO, and CREF-BO
differ slightly under the TEKDOS operating system.

B.l TEKDOS COMMAND FILES

The files MaO, LSO, and eso are actually TEKDOS command
files for the assembler, loader, and cross reference
programs, respectively. These command files set the
emulation mode to 0 and select the Z-BO assembler processor
(see TEKDOS documentation), then execute the appropriate
p-rogram file. You wilL note that all of these command files
are set up to execute the Microsoft programs from drive #1.
LINK-BO will also look for the library on drive #1. If you
wish to execute any of this software from drive #0, the
command file must be edited. Then, LINK-BO should be given
an explicit library search directive, such as MYLIB-S. See
the Switches section in Chapter 6, LINK-BO Linking Loader.

Filenames under TEKDOS do not use the Utility Software
Package default filename extensions.

B.2 MACRO-80

The MACRO-BO assembler accepts command lines only (the
invoke command, MBO, and all filenames and switches must be
on one line). No prompt is displayed, and the interactive
commands (,TTY:=TTY: and ,LPT:=TTY:) are not accepted.
Commands have the same format as TEKDOS assembler commands;
that is, up to three filenames or device names plus optional
switches.

MBO [object] [list] source [switch [switch [••.]]]

The object and list file entries are optional. These files
will not be created if the parameters are omitted. Any

Page B-2

error messages will still be displayed on the console. The
available switches are described in Chapter 5 of this
manual. All command line entries may be delimited by commas
or spaces. If you do not want to request an object file,
you must enter a <space comma space> between the M80 entry
and the name of the list file. For example:

M80 , LIST SOURCE

B.3 CREF-aO

The form of commands to CREF-aO is:

cao list source

Both filenames are required. The source file is always the
name of a CREF-SO file created during assembly by the C
switch. '

Example:

To create a CREF-aO file from the source TSTMAC using
MACRO-aD, enter:

Mao , TSTCRF TSTMAC C

To create a cross reference listing from the CREF-80 file
TSTCRF, enter:

cao TSTLST TSTCRF

B.4 LINK-aD

With TEKDOS, the LINK-aO loader accepts interactive commands
only. Command lines are not supported.

When LINK-aD is invoked, and whenever it is waiting for
input, it will prompt with an asterisk. Commands are lists
of filenames and/or devices separated by commas or spaces
and optionally interspersed with switches. The input to
LINK-SO must be r·1icrosoft relocatable object code (not the
same as TEKDOS loader format).

Switches to LINK-80 are delimited by hyphens under TEKDOS,
instead of slashes. All LINK-80 switches (as documented in
Chapter 6) are supported, except -G and -N, which are not
implemented at this time.

Page B-3

EXAMPLE:

1. Assemble a MACRO-80 program named XTEST, creating
an object file called XREL and a listing file
called XLST:

>M80 XREL XLST XTEST

2. Load XTEST and save the loaded module:

>L80
*XREL-E
[04AD 22B8]
*DOS*ERROR 46
L80 TERMINATED
>M xt-10D 400 22B8 04AD

Note that -E exits via an error message due to execution of
a Halt instruction. The memory image is intact, however,
and the TEKDOS Module command may be used to save it. Once
a program is saved in module format, it may then be executed
directly without going through LINK-80 again.

The bracketed numbers printed by LINK-80 before exiting are
the entry point address and the highest address loaded,
respectively. The loader default is to begin loading at
400H. However, the loader also places a jump to the start
add.ressin_l.oca.ti.Qo 0,. Hh_Lch allows ex.ecution tohe9-Ln. __ a t O.
The memory locations between 0003 and 0400H are reserved for
SRB's and I/O buffers at runtime.

APPENDIX C

ASCII CHARACTER CODES

Dec Hex CHR Dec Hex CHR Dec Hex CHR

000 OOH NUL 043 2BH + 086 S6H V
001 01H SOH 044 2CH , 087 S7H W
002 02H STX 045 2DH 088 S8H X
003 03H ETX 046 2EH 089 S9H Y
004 04H EaT 047 2FH / 090 SAH Z
005 05H ENQ 048 30H 0 091 5BH [
006 06H ACK 049 31H 1 092 5CH \
007 07H BEL 050 32H 2 093 SDH]
008 08H BS 051 33H 3 094 SEH "'-

009 09H HT 052 34H 4 095 SFH
010 OAH LF 053 35H 5 096 60H T

011 OBH VT 054 36H 6 097 61H a
012 OCH FF 055 37H 7 098 62H b
013 ODH CR 056 38H 8 099 63H c
014 OEH SO 057 39H 9 100 64H d
015 OFH S1 058 3AH 101 65H e
016 10H DLE 059 3BH ; 102 66H f
017 11H DCI 060 3CH < 103 67H 9
018 12H DC2 061 3DH = 104 68H h
019 13H DC3 062 3EH > 105 69H i
020 14H DC4 063 3FH ? 106 6AH j
021 ISH NAK 064 40H @ 107 6BH k
022 16H SYN 065 41H A 108 6CH 1
023 17H ETB 066 42H B 109 6DH m
024 18H CAN 067 41H C 110 6EH n
025 19H EM 068 44H D III 6FH 0

026 lAH SUB 069 45H E 112 70H P
027 1BH ESCAPE 070 46H F 113 71H q
028 1CH FS 071 47H G 114 72H r
029 1DH GS 072 48H H 115 73H s
030 1EH RS 073 49H I 116 74H t
031 1FH us 074 4AH J 117 75H u
032 20H SPACE 075 4BH K 118 76H v
033 21H 076 4CH L 119 77H w
034 22H " 077 4DH M 120 78H x
035 23H * 078 4EH N 121 79H y
036 24H $ 079 4FH a 122 7AH z
037 25H % 080 SOH P 123 7BH I 038 26H & 081 51H Q 124 7CH
039 27H 082 52H R 125 7DH
040 28H (083 53H S 126 7EH
041 29H) 084 54H T 127 7FH DEL
042 2AH * 085 55H U

Dec=decimal, Hex=hexadecima1 (H), CHR=character.
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

APPENDIX D

FORMAT OF LINK COMPATIBLE OBJECT FILES

This appendix contains reference material for users who wish
to know the load format of LINK-ao relocatable object files.
None of this material is necessary to the operation of ALDS.
There is nothing in the format material presented here which
can be manipulated by the user. The material is highly
technical, and it is not presented in any tutorial manner.

LINK-compatible object files consist of a bit stream.
Individual fields within the bit stream are not aligned on
byte boundaries, except as noted below. Use of a bit stream
for relocatable object files keeps the size of object files
to a minimum, thereby decreasing the number of disk
reads/writes.

There are two basic types of load items: Absolute and
Relocatable. The first bit of an item indicates one of
these two types. If the first bit is a a, the following a
bits are loaded as an absolute byte. If the first bit is a
I, the next 2 bits are used to indicate one of four types of
relocatable items:

00 Special LINK item (see below).

01 Program Relative. Load the following 16 bits
after adding the current Program base.

10 Data Relative. Load the following 16 bits
after adding the current Data base.

11 Common Relative. Load the following 16 bits
after adding the current Common base.

Page D-2

Special LINK items consist of the bit stream 100 (read
one-zero-zero) followed by:

a four-bit control field

an optional A field consisting of a two-bit address
type that is the same as the two-bit field described
above, except 00 specifies absolute address

an optional B field consisting of 3 bits that give a
symbol length and up to 8 bits for each character of
the symbol

A general representation of a special LINK item is:

1 00 xxxx yy nn
~

A field

zzz + characters of symbol name ,
B field

where: xxxx is four-bit control field (0-15 below)
yy is two-bit address type field
nn is sixteen-bit value
zzz is three-bit symbol length field

The following special types have a B-field only:

a Entry symbol (name for search)
1 Select COMMON block
2 Program name
3 Request library search
4 Extension LINK items (see below)

The following special LINK items have both an A field and a
B field:

5 Define COMMON size
6 Chain external (A is head of address chain, B

is name of external symbol)
7 Define entry point (A is address, B is name)

Page D-3

The following special LINK items have an A field only:

8 External - offset. Used for JMP and CALL to
externals

9 External + offset. The A value will be added
to the two bytes starting at the current
location counter immediately before execution.

10 Define size of Data area (A is size)
11 Set loading location counter to A
12 Chain address. A is head of chain. Replace

all entries in chain with current location
counter. The last entry in the chain has an
address field of absolute zero.

13 Define program size (A is size)
14 End program (forces to byte boundary)

The following special LINK item has neither an A nor a B
field:

15 End file

An Extension LINK item follows the general format of a
B-field-only special LINK item, but the contents of the
B-field are not a symbol name. Instead, the symbol area
contains one character to identify the type of extension
LINK item, followed by from 1 to 7 characters of additional
information.

Thus, every extension LINK item has the format:

1 00 0100 III s bbbbbb

where: III is 3 bits containing the length of the
field bbbbbb (0 implys 1 since Fao emits
entry length of 0 for Blank Common) ,

The

s

bbbbbb

is an eight bit extension LINK item
sub-type identifier, and

are 1 to 6 bytes for additional
information. If used as B field for
name, bbbbbb may be only 6 characters.

present extension LINK item sub-types are:

5 X '35' COBOL overlay segment sentinel

A X' 41' Arithmetic Fixup (Arithmetic Operator)

B X'42' Arithmetic Fixup (External Reference)

C X' 43' Arithmetic Fixup (Area Base + Offset)

Page D-4

Descriptions of Sub-types

sub-type 5

When the overlay segment sentinel is encountered by
LINK-aD, III receives the value 010 (binary), and the
current overlay segment number is set to the value b+49.
If the previously existing segment number was non-zero
and the IN switch is in effect, the data area is written
to disk in a file whose name is the current program name
and whose extension is Vnn, where nn are the two
hexadecimal digits representing the number b+49
(decimal) •

sub-types A,B,C

Sub-types A, B, and C allow the processing of Polish
Arithmetic text. Items must be read as Reverse Polish
Expression. One or more Value items (sub-type B or C)
are followed by one or more Arithmetic Operators
(sub-type A) and end with a Store-Result Arithmetic
Operator (B.STBT or B.STWD).

All Items are put in the Fixup Table afer any offset
entries have been converted to final addresses. The
Polish expression is executed out of the Fixup Table at
the end of link. The result is stored at the PC given
when the Items were read.

APPENDIX E

Table of MACRO-80 Pseudo-ops

Notation: * means Z80 pseudo-op
no stars means 8080 pseudo-op

SINGLE-FUNCTION PSEUDO-OPS

Instruction Set Selection

.Z80

.8080

Data Definition and Symbol Definition

*
*
*
*
*

*

-<name> ASET<exp->
BYTE EXT <symbol>
BYTE EXTRN <symbol>
BYTE EXTERNAL <symbol>
DB <exp>[,<exp> •••]
DB <string>[<string> •••]
DC <string>
DDB <exp>[,<exp> ••.]
DEFB <exp>[,<exp> •.•]
<name> DEFL <exp>
DEFM <string>[,<string> •••]
DEFS <exp>[,<val>]
DEFW <exp>[,<exp> ••.]
DS <exp>[,<val>]
DW <exp>[,<exp> .•.]
ENTRY <name>[,<name> •..]
<name> EQU <exp>
EXT <name>[,<name> •••]
EXTRN <name>[,<name> •.•]
EXTERNAL <name>[,<name> .••]
GLOBAL <name>[,<name> ...]
PUBLIC <name>[,<name> ••.]
<name> SET <exp> (not in .ZaD mode)

PC Mode Pseudo-ops

ASEG
CSEG
DSEG
COMMON /<block name>/
ORG <exp>
.PHASE <exp>/.DEPHASE

File Related Pseudo-ops

.COMMENT <delim><text><delim>
END [<exp>]
INCLUDE <filename>
$INCLUDE <filename>
MACLIB <filename>
.RADIX <exp>
.REQUEST <filename>[,<filename> ..•]

Listing Pseudo-ops

Format Control Pseudo-ops

* *EJECT [<exp>] (one star is part of *EJECT)
PAGE <exp>
SUBTTL <text>
TITLE <text>
$TITLE

General Listing Control Pseudo-ops

.LIST

.XLIST

.PRINTX <delim><text><delim>

Conditional Listing Control Pseudo-ops

.SFCOND

.LFCOND

.TFCOND

Expansion Listinq Control Pseudo-ops

.LALL

.SALL

.XALL

Page E-2

Cross-Reference Listing Control Pseudo-ops

.XCREF

.CREF

MACRO FACILITY PSEUDO-OPS

Macro Pseudo-ops

<name> MACRO <parameter>[,<parameter> •..]
ENDM
EXITM
LOCAL <parameter>[,<parameter> ...]

Repeat Pseudo-ops

REPT <exp>
IRP <dummy>,<parameters in angle brackets>
IRPC <dummy>,string

Conditional Assemblv Facility

* COND <exp>
ELSE

* ENDC
ENDIF
IF <exp>
IFB <arg>
IFDEF <symbol>
IFDIF <argl>,<arg2>
IFE <exp>
IFF <exp>
IFIDN <argl>,<arg2>
IFNB <arg>
IFNDEF <symbol>
IFT <exp>
IFI
IF2

Page E-3

APPENDIX F

Table of Opcodes

The opcodes are listed alphabetically by instruction set.
For details, refer to the reference books listed in Chapter
1.

F.I Z80 OPCODES

Opcode

ADC A
ADC HL, rp
ADD
AND
BIT
CALL add.r_
CALL cond,addr
CCF
CP
CPD
CPDR
CPI
CPIR
CPL
OAA
DEC
DI
OJNZ
EI
EX
EXX
HALT
1M x
IN
INC
IND
INOR
INI
INIR
JP addr
JP cond,addr
JR

Function

Add with Carry to Accumulator
Add Register Pair with Carry to HL
Add
Logical AND
Test Bit
Call Subroutine
Call Conditional
Complement Carry Flag
Compare
Compare, Decrement
Compare, Decrement, Repeat
Compare, Increment
Compare, Increment, Repeat
Complement Accumulator
Decimal Adjust Accumulator
Decrement
Disable Interrupts
Decrement and Jump if Not Zero
Enable Interrupts
Exchange
Exchange Register Pairs and Alternatives
Halt
Set Interrupt Mode
Input
Increment
Input, Decrement
Input, Decrement, Repeat
Input, Increment
Input, Increment, Repeat
Jump
Jump Conditional
Jump Relative

JR
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LDD
LDDR
LDI
LDIR
NEG
NOP
OR
OUT
OUTD
OTDR
OUTI
OTIR
POP
PUSH
RES
RET
RET
RETI
RETN
RL
RLA
RLC
RLCA
RLD
RR
RRA
RRC
RRCA
RRD
RST

cond,addr
A, (addr)

A, (Be) or (DE)
A, I
A,R

HL, (addr)
data

xy, (addr)
reg, (HL)

reg, (xy+disp)
rp, (addr)

SP,HL
SP,xy
dst,scr
(addr) ,A

(Be) 0 r (DE) ,A
I,A
R,A

(addr) ,HL
(HL) ,data
(xy+disp) ,data
(addr) ,xy

(HL) ,reg
(xy+disp) ,reg
(addr) ,rp

cond

Jump Relative Conditional
Load Accumulator Direct
Load Accumulator Secondary
Load Accumulator from Interrupt Vector
Load Accumulator from Refresh Register
Load HL Direct
Load Immediate
Load Index Register Direct
Load Register
Load Register Indexed
Load Register Pair Direct
Move HL to Stack Pointer
Move Index Register to Stack Pointer
Move Register-to-Register
Store Accumulator Direct
Store Accumulator Secondary
Store Accumulator to Interrupt Vector
Store Accumulator to Refresh Register
Store HL Direct
Store Immediate to Memory
Store Immediate to Memory Indexed
Store Index Register Direct
Store Register
Store Register Indexed
Store Register Pair Direct
Load, Decrement
Load, Decrement, Repeat
Load, Increment
Load, Increment, Repeat
Negate (Two's Complement) Accumulator
No Operation
Logical OR
Output
Output, Decrement
Output, Decrement, Repeat
Output, Increment
Output, Increment, Repeat
Pop from Stack
Push to Stack
Reset Bit
Return from Subroutine
Return Conditional
Return from Interrupt
Return from Non-Maskable Interrupt
Rotate Left Through Carry
Rotate Accumulator Left Through Carry
Rotate Left 'Circular
Rotate Accumulator Left Circular

Page F-2

Register

Register

Rotate Accumulator and Memory Left Decimal
Rotate Right Through Carry
Rotate Accumulator Right Through Carry
Rotate Right Circular
Rotate Accumulator Right Circular
Rotate Accumulator and Memory Right Decimal
Restart

SET Set Bit
SBC Subtract with Carry (Borrow)
SCF Set Carry Flag
SLA Shift Left Arithmetic
SRA Shift Right Arithmetic
SRL Shift Right Logical
SUB Subtract
XOR Logical Exclusive OR

F.2 8080 OPCODES

Opcode

ADC,ACI
ADD,ADI
ANA,ANI
CALL
CC
CM
CMA
CMC
CMP,CPI
CNC
CNZ
CP
CPE
CPO
CZ
DAA
DAD
DCR
DCX
DI
EI
HLT
IN
INR
INX
JC
JM
JMP
JNC
JNZ
JP
JPE
JPO
JZ
LDA
LDAX
LHLD
LXI

Function

Add with Carry
Add
Logical AND
Call Subroutine
CalIon Carry
Callan Minus
Complement Accumulator
Complement Carry
Compare
CalIon No Carry
Callan Not Zero
CalIon Positive
CalIon Parity Even
CalIon Parity Odd
CalIon Zero
Decimal Adjust
16-bit Add
Decrement
l6-bit Decrement
Disahle Interrupts
Enable Interrupts
Halt
Input
Increment
Increment 16 bits
Jump on Carry
Jump on Hinus
Jump
Jump on Not Carry
Jump on Not Zero
Jump on Positive
Jump on Parity Even
Jump on Parity Odd
Jump on Zero
Load Accumulator
Load Accumulator Indirect
Load HL Direct
Load 16 bits

Page F-3

MOV
MVI
NOP
ORA,ORI
OUT
PCHL
POP
PUSH
RAL
RAR
RC
RET
RLC
&'''1
RNC
RNZ
RP
RPE
RPO
RRC
RST
RZ
SBB,SBI
SHLD
SPHL
STA
STAX
STC
SUB,SUI
XCHG
XRA,XRI
XTHL

Move
Move Immediate
No Operation
Logical OR
Output
HL to Program Counter
Pop from Stack
Push to Stack
Rotate with Carry Left
Rotate with Carry Right
Return on Carry
Return from Subroutine
Rotate Left
Return on Minus
Return on No Carry
Return on Not Zero
Return on Positive
Return on Parity Even
Return on Parity Odd
Rotate Right
Restart
Return on Zero
Subtract with Borrow
Store HL Direct
HL to Stack Pointer
Store Accumulator
Store Accumulator Indirect
Set Carry
Subtract
Exchange D and E, Hand L
Logical Exclusive OR
Exchange Top of Stack, HL

Page F-4

$EJECT •
$INCLUDE •
$TITLE • •

INDEX

• 4-28
· 4-23
· 4-30

8080 Opcodes • . • • . • • • . 4-3
8080 Opcodes as Operands . • . 3-13

ASEG · · · · · · · · · 4-14
ASET · · · · · 4-12

BYTE EXT · · · · · 4-10
BYTE EXTERNAL · · · · · · 4-10
BYTE EXTRN · · · · · · 4-10

Calling a Macro • 4-38
Character Constants . • • . . 3-11
Comments • • • • • • • 3-2
COMMON . • • • • • • • • • • • 4-1 7
COND • . • . • . • . • • • . . 4-49
CREF-80 Cross Reference Facility 7-1
CREF-80 Cross-Reference Facility 2-4
CSEG ••••••••••••• 4-15, A-I
Current Program Counter . 3-13, A-I

DB · · · DC · · · · DEFB · DEFL · DEFM · · DEFS · DEFW · · · · Device names
DS · · OSEG · OW · · · ·
ELSE •
END . • •
ENDC •

·

· · · · · · · · · · · · · · •
· · · · · · · · · · · · · · · as files · · ·

· · · · · · · · · · · ·
., .

ENDIF • • . • . • • • • • .
ENDM •
ENTRY
EQU • • •
Error Messages

LINK-80 • . .
MACRO-80 • • •

EXIT.M . . .• ..•
EXT • • . . . • • •
EXTERNAL . . . •
EXTERNAL Symbols . . • •
EXTRN • • • •• .•••

Figure

· 4-5

· 4-6

· 4-5

· 4-12

· 4-5

· 4-7

· 4-8

· 5-12

· 4-7

· 4-16,

· 4-8

· 4-50
• 4-22
· 4-50
• 4-50
• 4-44
· 4-11
• 4-9

• 6-19
• 5-15
• 4-44
· 4-10
• 4-10
· 3-6
• 4-10

A-I

Developing assembly programs 1-5
Device Designations without filenames 5-12
Loading changes Relative address to fixed 1-7
ORG in relative modes is an offset 1-8
PUBLIC symbol linked with EXTERNAL 1-6
Relationships among programs 1-10
Table of Link-80 Switches • 6-5

File Format ••• 3-1, 5-13

GLOBAL .

IF • • • . .• •
IFl • •• .• •
IF2 ••• • • .
IFB • .• • • •
IFDEF • • • . • • •
IFDIF • • • • • • •
IFE . •• . • •
IFF • • • • • •
IFIDN • • • • • • •

4-11

• 4-49
• 4-49
• 4-49
• 4-49

• • • 4-49
• 4-50
• 4-49
• 4-49
• 4-50

IFNB • • • • • • • • • 4-50
IFNDEF • . •• ••• • 4-49
IFT • • • • • • • • • 4-49
INCLUDE • • • • • 4-23
IRP • • • • • • • • • 4-42
IRPC • • • • • 4-43

LABEL: · · · · 3-4
LIB-80 Command Format · · · · 8-3
LIB-80 Library Manager · · 2-4
LIB-80 Modules · · · . · · · · 8-5
LINK-80 Error Messages · · 6-19
LINK-80 Linking Loader · · 2-3,
Listing Formats · 5-13
LOCAL · · · · 4-45

6-1

MAC LIB . . • • . • • • • • . • 4 - 2 3
MACRO . • • . . • . • 4-37
MACRO-80 Error Codes and Messages 5-15
MACRO-80 Listing Files . . 5-13
MACRO-80 Macro Assembler . . • 5-1
Modes . • • • • • • • . • • • 3-7
Modes Rules for symbols in expressions 3-12

NAME •.• • 4-24
Numbers as operands • 3-10

Operands • . • • • 3-10
Operator Order of Precedence. 3-17
Operators • • . • . •. • 3-14
ORG 4-18

PAGE •
Pseudo-ops

$EJECT •
$INCLUDE •
$TITLE .
ASEG .••

• 4-28, A-I

• 4-28
• 4-23
· 4-30
· 4-14

ASET •
Block· Listing
BYTE EXT •
BYTE EXTERNAL
BYTE EXTRN •
COMMON .
COND •
Conditional
Conditional Listing
CSEG •
Data Definition
DB •
DC •
DEFB •
DEFL .
DEFM .
DEFS •
DEFW •
OS •
DSEG •
OW •
ELSE •
END
ENDC •
ENDIF
ENDM •
ENTRY
EQU
EXITM
Expansion Listing
EXT
EXTERNAL •
EXTRN···
Format Control •
General Listing
GLOBAL •
IF •
IFl
IF2
IFB
IFDEF
IFDIF
IFE
IFF
IFIDN
IFNB .
IFNDEF
1FT
INCLUDE
IRP
IRPC .
Listing
LOCAL
MACLIB •
MACRO
Macro Listing
NAME.
ORG

4-12
4-34 ·
4-10
4-10
4-10
4-17
4-49
4-48
4-33

• 4-15, A-I
• 4-4
• 4-5
• 4-6
• 4-5

4-12
• 4-5
• 4-7
• 4-8
• 4-7
• 4-16, A-I
• 4-8
• 4-50
• 4-22

4-50
• 4-50
• 4-44
• 4-11
• 4-9
• 4-44
• 4-34
• 4-10
• 4-10

4~1-0··-

• 4-28
• 4-31
• 4-11
• 4-49

4-49
4-49
4-49

• 4-49
• 4-50
• 4-49
• 4-49
• 4-50
• 4-50

4-49
• 4-49

4-23
• 4-42

4-43
4-27
4-45
4-23
4-37
4-34
4-24
4-18

PAGE .
PC Mode
PUBLIC •
REPT •
SET
SUB TTL .
Symbol Definition
TITLE
.PHASE .
.DEPHASE .
.COMMENT •
.RADIX •
.REQUEST .
*EJECT •
.LIST
.XLIST .
.PRINTX
.SFCOND
.LFCOND
.TFCOND
.XALL
• LALL.
.SALL
.CREF
.XCREF •
.CREF
• XC REF

PUBLIC •
PUBLIC Symbols •

· 4-28, A-I
· 4-13
· 4-11
· 4-41
· 4-12
· 4-30, A-I
· 4-4
· 4-29
· 4-19
• 4-19
• 4-21

4-25
• 4-26
· 4-28
• 4-31
• 4-31
• 4-32
· 4-33
• 4-33
· 4-33
• 4-34
• 4-34
· 4-34
• 4-35
• 4-35
• 7-3

7-3
• 4-11
• 3-5

REPT • • 4-41
Restrictions on module placement with LINK-80
Rules for EXTERNALS in expressions 3-12

SET
. Special Macro Operators

%

. . , ,
&

Special Radix Notation •
Statement Line Format
Strings
SUBTTL .
Switches

LIB-80
/C •
IE .
IH .
/L .
/0 .
/R .
/U .

LINK-80
/D
IE .
/G •
/H •

• 4-12
· 4-46
• 4-46
• 4-46

4-46
· 4-46
• 3-10
· 3-1
· 3-11
· 4-30, A-I

• 8-9
· 8-9
• 8-9
· 8-10
• 8-9
• 8-10

8-9
8-9

6-12
6-8

· 6-6
6-17

6-12 to 6-13

/M •
/N •
/N:P •
/0 .
/P .
/R .
/5 .
/U .
/X .
/Y .

MACRO-80 •
/H .
/1 .
/L .
/M .
/0 .
/P .
/R .
/X .
/Z .

... ..

Symbol Table format
Symbols
Symbols in expressions •
Symbols Rules
Syntax Notation
System Requirements

TEKDOS .
TITLE

Z80 Opcodes

.PHASE .

.DEPHASE •

.COMMENT .

.RADIX •

.REQUEST •
*EJECT •
.LIST
.XLIST •
.PRINTX
.PRINTX
.SFCOND
.LFCOND
.TFCOND
.XALL
.LALL
.SALL
.CREF
.XCREF •
10 - MACRO-SO
IH - MACRO-80
IR - MACRO-SO
IL - MACRO-80
IZ - MACRO-SO
II - MACRO-SO
IP - MACRO-SO
1M - MACRO-80

. . .

. .

• 6-16
• 6-9
• 6-10
• 6-17
• 6-11
• 6-14
• 6-15
• 6-16
• 6-18
• 6-18
• 5-6
• 5-6
• 5-7
• 5-7
• 5-8
• 5-6
• 5-7
• 5-6
• 5-8

5-7
• 5-14
• 3-3
• 3-12
• 3-3
• 1-3
• 1-2

• B-1
• 4-29

• 4-3

• 4-19
• 4-19
• 4-21
• 4-25
• 4-26
• 4-28
• 4-31
• 4-31
• 4-32
• 4-32
• 4-33
• 4-33
· 4-33
• 4-34
• 4-34
• 4-34
• 4-35
• 4-35

5-6
5-6
5-6
5-7
5-7
5-7
5-7

· 5-S

/X - MACRO-SO · · · · 5-S
/G - LINK-SO · · · · · · · 6-6
/E - LINK-SO · · · · · · · 6-S
/N - LINK-SO · · · · · 6-9
/N:P - LINK-SO · · · · · · · · 6-10
/P - LINK-SO · · · · · · · · · 6-11
/D - LINK-SO · · · · · · · 6-12
/R - LINK-SO · · · 6-14
/S - LINK-SO · · · · · · · · · 6-15
/U - LINK-SO · · · · · · · 6-16
/M - LINK-SO · · · · · · · 6-16
/0 - LINK-SO · · · 6-17
/H - LINK-SO · · · · · · · 6-17
/X - LINK-SO · · · · · · · 6-18
/y - LINK-SO · · · 6-18
.CREF · · · · · · · · · · · · 7-3
.XCREF · · · · · · 7-3
/E - LIB-SO · · · S-9
/R - LIB-SO · · · · · · · 8-9
/L - LIB-SO · · · S-9
/U - LIB-SO · · · · · 8-9
/C - LIB-SO · S-9
/0 - LIB-SO · · · · · 8-10
/H - LIB-SO · · · · · 8-10
$ - Current Program Counter · A-1
% · · · · · · 4-46

· · · · · · · · · · 4-46 . . · · · · · · · · 4-46 , ,
& · · · · · · · · · · · · 4-46

Microsoft
Software Problem Report

Use this form to report errors or problems in: [J FORTRAN-ao

o COBOL-aD

D MACRO-80

o LINK-aO

Release (or version) number:

Date

Report only one problem per form.

Describe your hardware and operating system:

Please supply a concise description of the problem and the
circumstances surrounding its occurrence. If possible, reduce
the problem to a simple test case. Otherwise, include all
programs and data in machine readable ferm (preferably on a
diskette). If a patch or interim solution is being used ,
please describe it.

This form may also be used to describe suggested enhancements
to Microsoft software.

Problem Description:

-over-

Did you find errors in the documentation supplied with the
software? If so, please include page numbers and describe:

Fill in the following information before returning this form:

Name Phone -------------------------------------- -----------------------
Organization

----------~---
Address --------------------------

City

Return form to: Microsoft, Inc.
10700 Northup Way
Bellevue, WA 98004

-------- State Zip ---

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1_000
	1_001
	1_002
	1_003
	1_004
	1_005
	1_01
	1_02
	1_03
	1_04
	1_05
	1_06
	1_07
	1_08
	1_09
	1_10
	1_11
	1_12
	1_13
	1_14
	1_15
	2_000
	2_001
	2_002
	2_003
	2_004
	2_005
	2_006
	2_007
	2_008
	2_009
	2_010
	2_011
	2_012
	2_013
	2_014
	2_015
	2_016
	2_017
	2_018
	2_019
	2_020
	2_021
	2_022
	2_023
	2_024
	2_025
	2_026
	2_027
	2_028
	2_029
	2_030
	2_031
	2_032
	2_033
	2_034
	2_035
	2_036
	2_037
	2_038
	2_039
	2_040
	2_041
	2_042
	2_043
	2_044
	2_045
	2_046
	2_047
	2_048
	2_049
	2_050
	2_051
	2_052
	2_053
	2_054
	2_055
	2_056
	2_057
	2_058
	2_059
	2_060
	2_061
	2_062
	2_063
	2_064
	2_065
	2_066
	2_067
	2_068
	2_069
	2_070
	2_071
	2_072
	2_073
	2_074
	2_075
	2_076
	2_077
	2_078
	2_079
	2_080
	2_081
	2_082
	2_083
	2_084
	2_085
	2_086
	2_087
	2_088
	2_089
	2_090
	2_091
	2_092
	2_093
	2_094
	2_095
	2_096
	2_097
	2_098
	2_099
	2_100
	2_101
	2_102
	2_103
	2_104
	2_105
	2_105a
	2_105b
	2_105c
	2_106
	2_107
	2_108
	2_109
	2_110
	2_111
	2_112
	2_113
	2_114
	2_115
	2_116
	2_117
	3_000
	3_001
	3_002
	3_003
	3_004
	3_1-00
	3_1-01
	3_1-02
	3_1-03
	3_1-04
	3_1-05
	3_1-06
	3_1-07
	3_1-08
	3_1-09
	3_1-10
	3_2-00
	3_2-01
	3_2-02
	3_2-03
	3_2-04
	3_3-00
	3_3-01
	3_3-02
	3_3-03
	3_3-04
	3_3-05
	3_3-06
	3_3-07
	3_3-08
	3_3-09
	3_3-10
	3_3-11
	3_3-12
	3_3-13
	3_3-14
	3_3-15
	3_3-16
	3_3-17
	3_4-00
	3_4-01
	3_4-02
	3_4-03
	3_4-04
	3_4-05
	3_4-06
	3_4-07
	3_4-08
	3_4-09
	3_4-10
	3_4-11
	3_4-12
	3_4-13
	3_4-14
	3_4-15
	3_4-16
	3_4-17
	3_4-18
	3_4-19
	3_4-20
	3_4-21
	3_4-22
	3_4-23
	3_4-24
	3_4-25
	3_4-26
	3_4-27
	3_4-28
	3_4-29
	3_4-30
	3_4-31
	3_4-32
	3_4-33
	3_4-34
	3_4-35
	3_4-36
	3_4-37
	3_4-38
	3_4-39
	3_4-40
	3_4-41
	3_4-42
	3_4-43
	3_4-44
	3_4-45
	3_4-46
	3_4-47
	3_4-48
	3_4-49
	3_4-50
	3_5-00
	3_5-01
	3_5-02
	3_5-03
	3_5-04
	3_5-05
	3_5-06
	3_5-07
	3_5-08
	3_5-09
	3_5-10
	3_5-11
	3_5-12
	3_5-13
	3_5-14
	3_5-15
	3_5-16
	3_5-17
	3_6-00
	3_6-01
	3_6-02
	3_6-03
	3_6-04
	3_6-05
	3_6-06
	3_6-07
	3_6-08
	3_6-09
	3_6-10
	3_6-11
	3_6-12
	3_6-13
	3_6-14
	3_6-15
	3_6-16
	3_6-17
	3_6-18
	3_6-19
	3_6-20
	3_6-21
	3_6-22
	3_7-00
	3_7-01
	3_7-02
	3_7-03
	3_7-04
	3_8-01
	3_8-02
	3_8-03
	3_8-04
	3_8-05
	3_8-06
	3_8-07
	3_8-08
	3_8-09
	3_8-10
	3_A-01
	3_B-01
	3_B-02
	3_B-03
	3_C-01
	3_D-01
	3_D-02
	3_D-03
	3_D-04
	3_E-01
	3_E-02
	3_E-03
	3_F-01
	3_F-02
	3_F-03
	3_F-04
	3_I-01
	3_I-02
	3_I-03
	3_I-04
	3_I-05
	3_I-06
	replyA
	replyB

